Rattle and shine by compact binaries mergers

L. Lehner

(Perimeter Institute/CIFAR)




Compact objects have long been focus of attention as they:

e Rattle the spacetime = gravitational waves (e.g. binary
pulsar)
— |Is GR correct? And if not what might the correct theory be?
— Inform population of BHs & NSs
— Extract EoS (or at least a bound)
— Trigger EM counterpart searches

e Help systems to shine brightly > EM waves (e.g. AGNSs)

— Binary connection with sGRB? (typically: do they give rise to a BH
+ disk with the right properties? Or a long-lived highly magnetized
star?)

— what else? E.g. help extract EoS? What else & how can shine?
— Trigger GW counterpart searches



Quality of information

* On the grav wave front. In pple clean but fregn limited!
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Ranges are sky-averaged distance to which a binary neutron star is visible

 Onthe EM front. Largely quite messy, relatively few
‘clean smoking guns’

- Combined information will be required to answer even
some of the fundamental questions. For this, of course,
comprehensive knowledge of the system is required
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‘First” 2 gns: grave waves & BH-disk...
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Decoding waveforms:

— Early on PN is enough but tidal effects visible near merger ~ (v/
c)10 R> (Nagar etal, Hinderer etal)

— then ‘barish’ structure. Strongly dependent on masses/EOS
(Bausswein etal)

Distinguishing EOS with single (few) NS-NS grav wave
signals alone will be difficult (SNR dependent)

BH-NS waveform near merger depends on competition

between tidal radius and ISCO radius.

— Risco "M ; Ry~ MY3 . > tidal disruption requires low BH
masses and/or high BH spins. Otherwise BH-NS waveform =2
same as BH-BH waveform of same masses



What’s the outcome? (sGRB motivated)
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Low spin/high mass,
small radius = direct

BHNS: High spin/low mass, large radius
- disruption.

plunge.
NSNS: M, . >1.3-1.5 M
No sGRB, but could tot

still shine.

max
‘comfortable’ disk mass

GW: with a clear cutoff

NSNS: M, <1.3-1.5M_,
GW: postmerger signal
sGRB from ‘sufficiently’
magnetized MNS?



Further nuggets from simulation

System radiates ~ % of total mass, Luminosity ~1077 L., just needs
to tap a portion to shine somehow. Examples:

[‘unipolar induction” works even for ‘.

*BH-BH surrounded by plasma

non spinning BHs] y

ul [Palenzuela,LL
,Liebling "10]

*NS-NS merger = tap kinetic energy = Produce a magnetar'

[Anderson,LL,Liebling,Neilsen; Giacommazo-Baiotti-Rezzolla,...]

BH-NS can generate a jet [Hansen-Liutikov,

McWillians-Levin,Paschalidis etal]

— Long-lived magnetar 2 sGRB model (Metzger)

— Magnetar collapse = can radiate up to even 10°! ergs
[LL,Palenzuela,Liebling, Thompson,Hanna ‘12]

— Depending on loading this might come out as a GRB or [ :
precursor/extended emission [Murguia,Ramirez-Ruiz,Montes,DeColle,Lee ‘14]



Signals: what else & wich ones might be clean enough?

Detectable with present or upcoming facilities within reasonable allocation
Accompany a high fraction of GW events

Be unambiguously identifiable

Quality of the information than can be drawn from them
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The above is a tall order, non-vacuum binary mergers (BH-NS & NS-NS)
can give, in principle plenty: neutrinos, EM from gamma to radio

and GWs. Also, a possibility is that GW might even give ‘early-
warning’ prior to merger (mins).

Among the many possible options, and bearing in mind conditions
above, let’s consider 2 that could be ‘sufficiently clean’ by
considering pre-merger in time, or far from the messy details of
the source.



Discriminating options

Optical Optical
No Known Pulse

* Concentrate on premerger stage: Emission '/j L
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Induced by magnetosphere’s dynamics as
binary tightens. Pulsar guidance 2
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* Also, ‘kilonovae’ related to radiactive decay

of r-processes. Distribution is tied to how
neutron rich the material that powers the
process is. Standard suspect: supernovae...
but simulations point to ejecta not
sufficiently neutron rich

Also, one association with GRB 130603B [Tanvir etal y
Nature ‘13, Berger etal Astrophys J. Letters ‘13] ). B e T
infrared signal implies high neutron richness
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Pulsar guidance

e NSisn’tin vacuum. [Goldreich-
Julian] Magnetosphere induced
by pair creation
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acceleration

AW * Charges shorts out E.B = “force
. acceleration . .
free’ condition

field lines | :
: Closed
field lines ! light N

cylinder | ~B2 4 RS [1+Sin(X)2]
3 [Spitkovsky 2006 ]

* Gaps, current sheet : zones
where particle acceleration
can take place
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Plasma arguments are ‘generic’
enough that should be
applicable to compact binaries
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Pre-merger: magnetosphere interactions

e As with pulsars, magnetosphere interactions
with binaries can induce a strong Poynting flux
scaling as L~ B?(1/a)°

e Similar structure to pulsar magnetosphere:
current sheet, gaps, closed/ ‘open” field lines,
polarity changes, etc.

* In pulsar, radio emission poorly understood, but

= 2% i better handle on gamma/x-ray side.
Extrapolating from current observations =2
. M- e e 15-100 Mpc horizon?
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[Palenzuela,LL,Liebling,Ponce,Neilsen ‘14]



rather isotropic counterpart

[Spitkovsky-Bai]



Added bonus (need!): what if GR is not correct?
GWs might tell us so, but we might need also EM waves

e Scalar-tensor theories [Fierz-Jordan-Brans-Dicke,Damour-
Esposito-Farese,...]

— Gravity mediated by usual tensor degrees of freedom + a non-
minimally coupled scalar field

— New phenomenology :
* Dipole radiation

* Spontaneous scalarization = provides a non-trivial ‘scalar charge’ to
compact stars

* While significantly constrained by solar and pulsar tests, interesting
parameter space remains & new phenomena can arise!

* Non-linear interactions till recently largely unexplored - more ‘generic’

scalarization possible (dynamical and/or induced scalarization)
[Barausse,LL,Palenzuela,Ponce ‘14]



e Dipole radiation modifies dynamical behavior.
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* Important deviations from GR behavior (eg
separation and grav wave signals) which might
not be easily identified by current detectors
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* Furthermore, non-monotonic behavior of
corrections (implications for, e.g. PPE)
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-Pheno: Interaction between differently scalarized
stars induces a dynamical
readjustment of charges to become equal

- ALIGO will have a hard time digging this out
for moderate and low mass binaries
- EM signals can potentially save the day

[Barausse,Palenzuela,Ponce,LL 2013; Sampson etal 2014, also Shibata,Taniguichi, Okawa, Buonanno ‘14]



EM signals can potentially save the day
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* Luminosity ‘sweep-up’ in frequency will be different from that

of GR
e ‘pulsar’ observations allow (indirect) grav wave detection to

continue



Fast-forward and outwards...
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* Neutrino characteristics are
similar across al EOS, but ejecta
properties are quite different
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Ejecta & possible associated emission

* Ejecta leaves the cental engine, is neutron rich = neutron
capture yields radioactive elements which would decay and yield
a rather isotropic signal.

* Result of nucleosynthesis depends on: velocity, amount and

Image: Wanajo et al. 2014

electron fraction (Y,) of ejected material
— Sufficiently small Y, (< 0.2) strong r-processes,
yields heavier nuclei (lantanides). Higher optical
depth - week delay and IR counterpart.
Otherwise lighter nuclei, day delay & optical counter.

mass number

NS-NS (equal mass) mergers = large range of Y, and temperatures, rather
isotropical, but amount highly dependent on EOS (softer EOS, higher mass)
[Hotokezaka etal, Palenzuela etal]. Unequal mass case more similar amount

BH-NS (if disrupted). Low Y., low temperatures, equatorial/axisymmetric
distribution. [Foucart etal]



Ejecta & properties
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Image: Holokezaka et al 2013 Image: Foucart et al 2015

Also, other ejecta from winds driven by the eventual accretion disk is possible, though
this is less neutron rich [Fernandez etal ‘15] and expected signal would be in the optical.



Summarizing results

* Amount & characteristics of ejecta quite tied to EoS.

— Very little < 0.001 M, for stiff EoS, velocity of ejecta ~ similar [0.1 — 0.4c] &
Y, quite peaked at ~ 0.2

— On the other hand, enough [0.001-0.01 M_] for soft EoS [collision takes
place deeper in the potential]. Y, peaked at ~ 0.2 with significant amounts
in [0.1-0.2]

— Supernovae simulations do not seem to get Y, this low. Also, abundance of
244py in deep-sea samples is 1/100 of what would be expected if
supernovae does the job but consistent with binary merger rates [Wallner
etal '15]



Speculations

 |F GRB130603B is a typical case’, and decay of r-processes
elements indicate very neutron rich ejecta, then if produced by
nearly equall neutron stars = EoS lies on the softer side [way
out: low mass BHs and/or very high spins]

e Alternatively, it could be produced by a BH-NS system with low
mass ratio and/or high spin. Further, this scenario favors stiff
EoS.

- A GW measurement would give masses (see however
[Hannam,Brown etal “13] Which will help dissentangle which system it
is and provide arguments for the EoS (even if not identified in
the GW side)



Final words

* Experimental front going strong, lots of activities and plans
for the future

* Global efforts towards multimessenger astronomy

* Counterparts provide significant information, which might
be required even to answer the most basic questions



