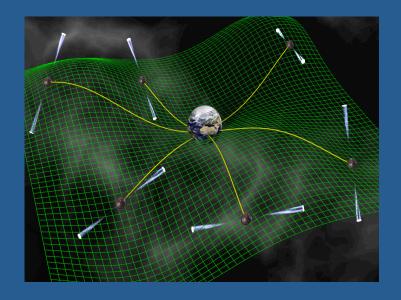
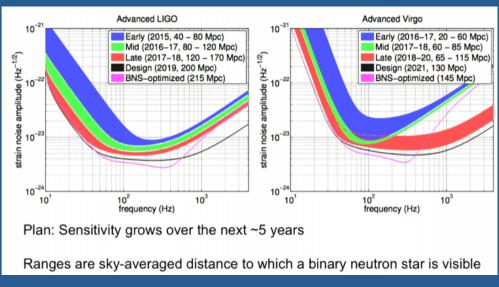
Rattle and shine by compact binaries mergers

L. Lehner

(Perimeter Institute/CIFAR)

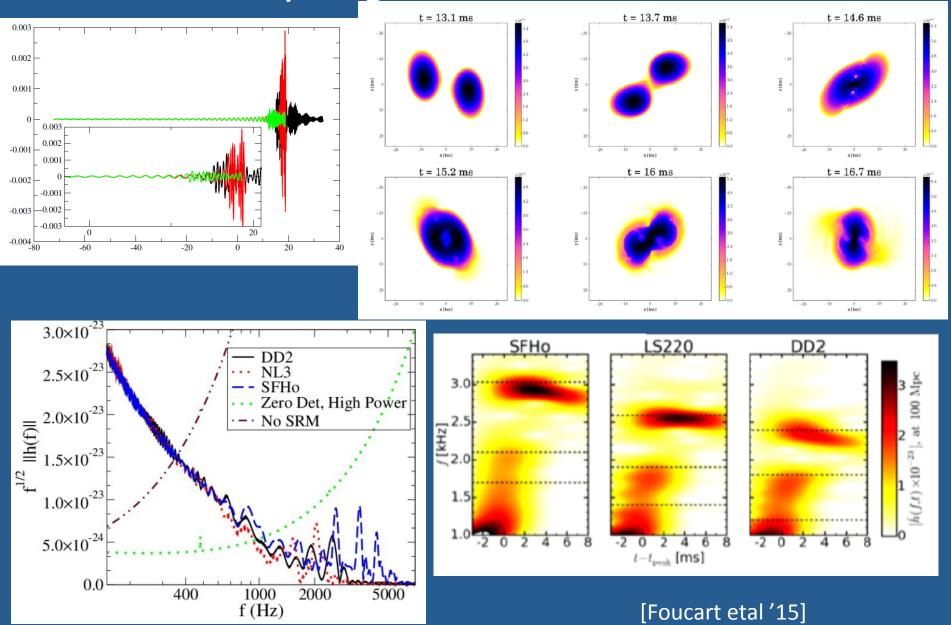

Compact objects have long been focus of attention as they:


- - Is GR correct? And if not what might the correct theory be?
 - Inform population of BHs & NSs
 - Extract EoS (or at least a bound)
 - Trigger EM counterpart searches
- Help systems to shine brightly

 EM waves (e.g. AGNs)
 - Binary connection with sGRB? (typically: do they give rise to a BH + disk with the right properties? Or a long-lived highly magnetized star?)
 - what else? E.g. help extract EoS? What else & how can shine?
 - Trigger GW counterpart searches

Quality of information

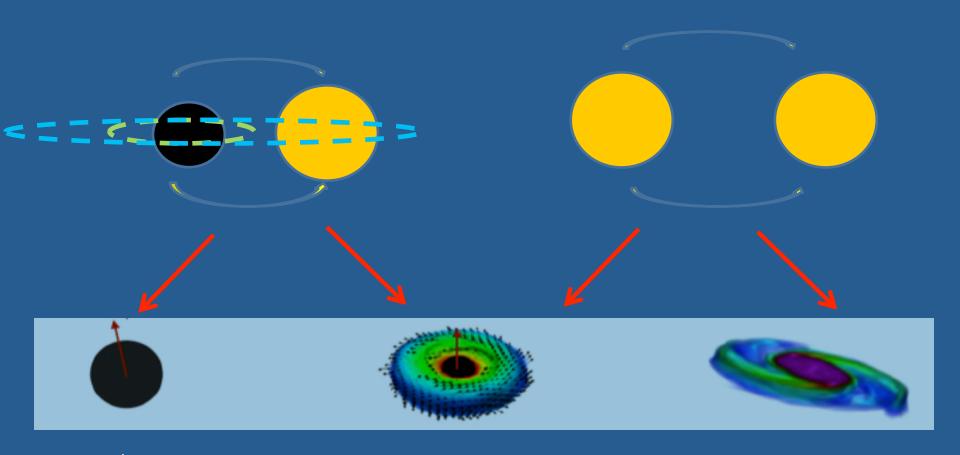
On the grav wave front. In pple clean but freqn limited!



- On the EM front. Largely quite messy, relatively few 'clean smoking guns'
- → Combined information will be required to answer even some of the fundamental questions. For this, of course, comprehensive knowledge of the system is required

"group"	EOS (P: piecewise polytrope, T: tabulated)	MHD (I:Ideal, P:pasive R:Resistive)	Plasma (ForceFree)	Sub-grid model for mag. field effects or direct studies	Neutrino (E:effective C:Cooling, L:Leakage,M: Moment)	Alt. gravity
Shibata,Hotoz ekaka,Sekiguc hi,Kiuchi,Kyuto ku	T,P	I		Direct Sims	M	✓
LL,Palenzuela,L iebling,Neilsen 	Т	R	✓	Sub-grid (direct sims)	L	✓
Rezzolla, Giaco mmazzo, Alic, B aiotti, Moesta	Р	R	✓	Sub-grid (direct sims)	L	
Shapiro,Pascha lidis,Etienne,G old,Ruiz	Р	Р	✓		Е	
Duez,Foucart,P feiffer,Haas,	Т	1	✓		M	
Pretorius, Will, Stephens, Ram azanoglou	Р		✓			
Bruegmann,Be rnuzzi,Dietrich, Markakis	Р					

'First' 2 qns: grave waves & BH-disk...


[Palenzuela, LL, Liebling, Neilsen, Caballero '15]

Decoding waveforms:

- Early on PN is enough but tidal effects visible near merger ~ (v/c)¹⁰ R⁵ (Nagar etal, Hinderer etal)
- then 'barish' structure. Strongly dependent on masses/EOS (Bausswein etal)
- Distinguishing EOS with single (few) NS-NS grav wave signals alone will be difficult (SNR dependent)

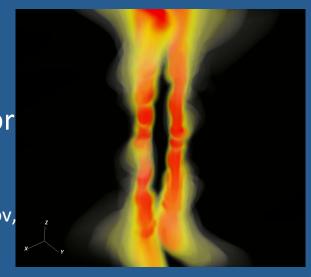
- BH-NS waveform near merger depends on competition between tidal radius and ISCO radius.
 - R_{ISCO} ~ M; R_{tidal} ~ $M^{1/3}$. → tidal disruption requires low BH masses and/or high BH spins. Otherwise BH-NS waveform → same as BH-BH waveform of same masses

What's the outcome? (sGRB motivated)

Low spin/high mass, small radius → direct plunge.
No sGRB, but could still shine.

BHNS: High spin/low mass, large radius disruption.

NSNS: $M_{tot} > 1.3-1.5 M_{max}$ 'comfortable' disk mass GW: with a clear cutoff


NSNS: M_{tot} < 1.3-1.5 M_{max} GW: postmerger signal sGRB from 'sufficiently' magnetized MNS?

Further nuggets from simulation

System radiates \sim % of total mass, Luminosity \sim 10⁷⁻⁹ L_{GRB} , just needs to tap a portion to shine somehow. Examples:

BH-BH surrounded by plasma
 ['unipolar induction' works even for non spinning BHs]

BH-NS can generate a jet [Hansen-Liutikov, McWillians-Levin, Paschalidis et al]

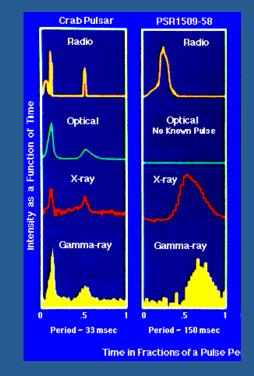
[Palenzuela,LL, Liebling '10]

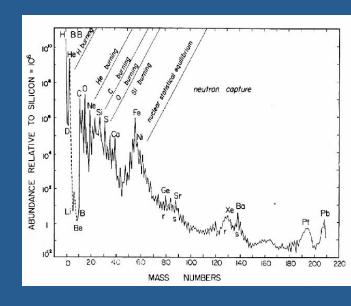
•NS-NS merger → tap kinetic energy → Produce a magnetar!

[Anderson, LL, Liebling, Neilsen; Giacommazo-Baiotti-Rezzolla,...]

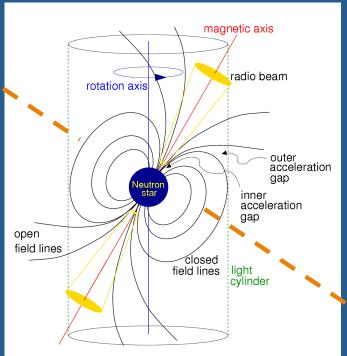
- Long-lived magnetar → sGRB model (Metzger)
- Magnetar collapse → can radiate up to even 10⁵¹ ergs
 [LL,Palenzuela,Liebling,Thompson,Hanna '12]
- Depending on loading this might come out as a GRB or *
 precursor/extended emission [Murguia,Ramirez-Ruiz,Montes,DeColle,Lee '14]

Signals: what else & wich ones might be clean enough?

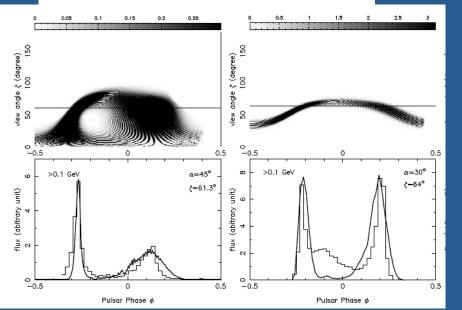

- 1. Detectable with present or upcoming facilities within reasonable allocation
- 2. Accompany a high fraction of GW events
- 3. Be unambiguously identifiable
- 4. Quality of the information than can be drawn from them

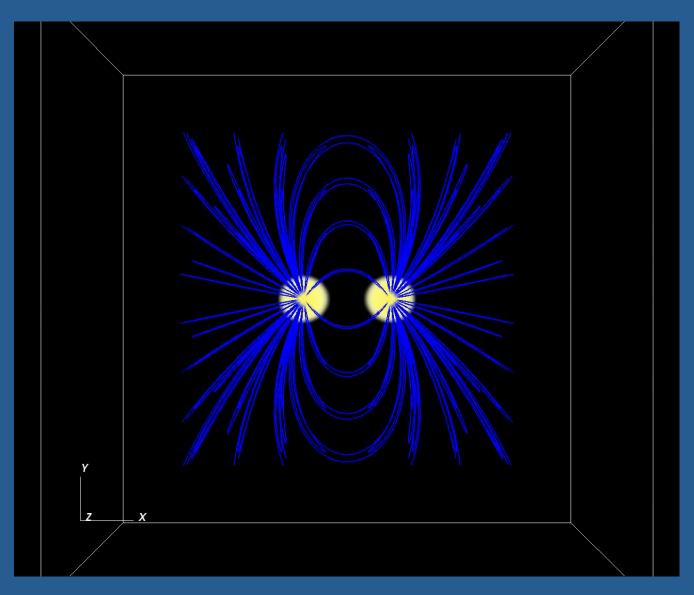

The above is a tall order, non-vacuum binary mergers (BH-NS & NS-NS) can give, in principle plenty: neutrinos, EM from gamma to radio and GWs. Also, a possibility is that GW might even give 'early-warning' prior to merger (mins).

Among the many possible options, and bearing in mind conditions above, let's consider 2 that could be 'sufficiently clean' by considering pre-merger in time, or far from the messy details of the source.

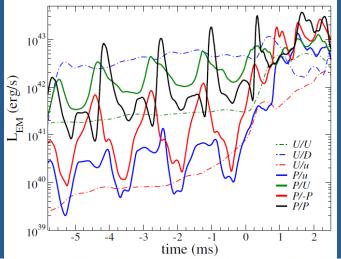

Discriminating options

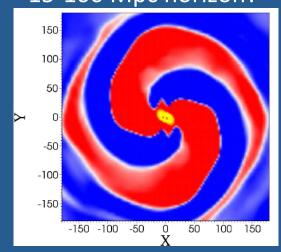
- Concentrate on premerger stage: Emission Induced by magnetosphere's dynamics as binary tightens. Pulsar guidance -> emission across many bands. High frequency 'best' understood (sidestepping optical depth issues)
- Also, 'kilonovae' related to radiactive decay of r-processes. Distribution is tied to how neutron rich the material that powers the process is. Standard suspect: supernovae... but simulations point to ejecta not sufficiently neutron rich
- Also, one association with GRB 130603B [Tanvir etal Nature '13, Berger etal Astrophys J. Letters '13]). infrared signal implies high neutron richness

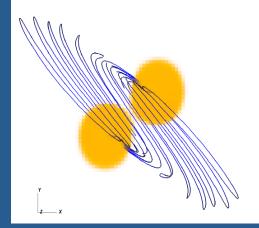

Pulsar guidance


- NS isn't in vacuum. [Goldreich-Julian] Magnetosphere induced by pair creation
- Charges shorts out E.B → 'force free' condition

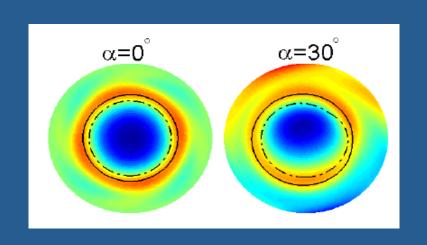
```
L \sim B^2 \Omega^4 R^6 [1+\sin(x)^2]
[Spitkovsky 2006]
```

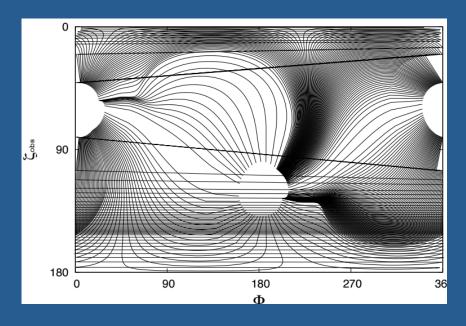

- Gaps, current sheet : zones where particle acceleration can take place
- Plasma arguments are 'generic' enough that should be applicable to compact binaries

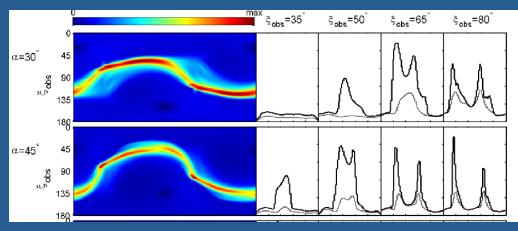

spacetime rattle → Pulsar on steroids



Pre-merger: magnetosphere interactions

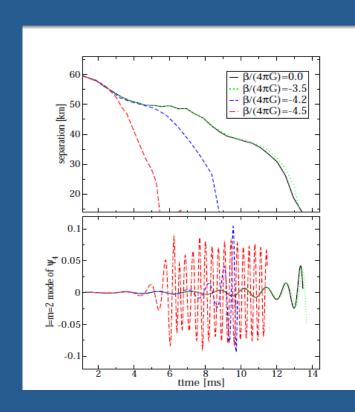

- As with pulsars, magnetosphere interactions with binaries can induce a strong Poynting flux scaling as $L \sim B^2 (1/a)^5$
- Similar structure to pulsar magnetosphere: current sheet, gaps, closed/``open'' field lines, polarity changes, etc.
- In pulsar, radio emission poorly understood, but better handle on gamma/x-ray side.
 Extrapolating from current observations -> 15-100 Mpc horizon?



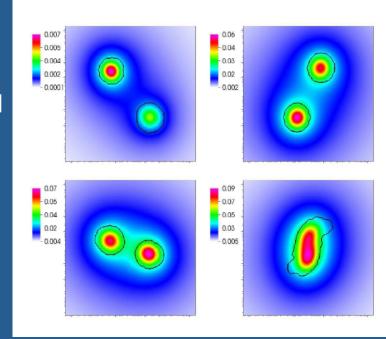


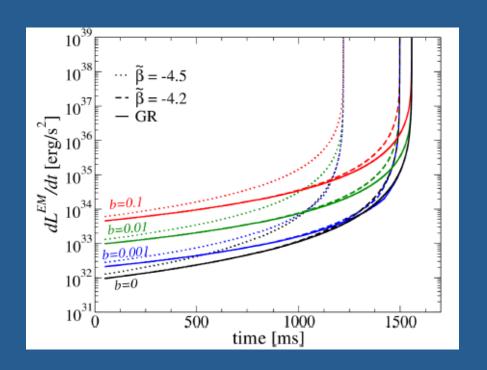
[Palenzuela,LL,Liebling,Ponce,Neilsen '14]

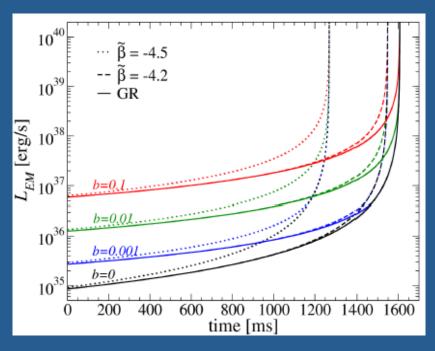
rather isotropic counterpart



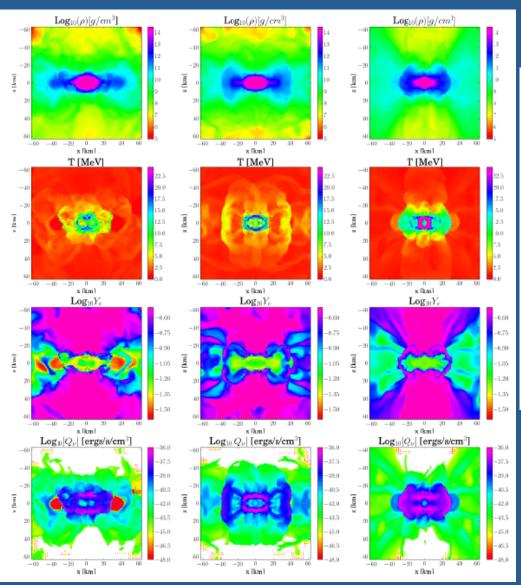
Added bonus (need!): what if GR is not correct? GWs might tell us so, but we might need also EM waves

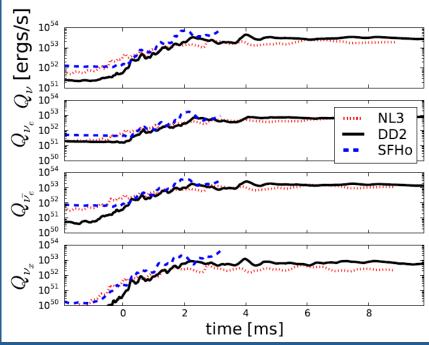

- Scalar-tensor theories [Fierz-Jordan-Brans-Dicke, Damour-Esposito-Farese,...]
 - Gravity mediated by usual tensor degrees of freedom + a nonminimally coupled scalar field
 - New phenomenology :
 - Dipole radiation
 - Spontaneous scalarization → provides a non-trivial 'scalar charge' to compact stars
 - While significantly constrained by solar and pulsar tests, interesting parameter space remains & new phenomena can arise!
 - Non-linear interactions till recently largely unexplored → more 'generic' scalarization possible (dynamical and/or induced scalarization)
 [Barausse,LL,Palenzuela,Ponce '14]


- Dipole radiation modifies dynamical behavior.
- Important deviations from GR behavior (eg separation and grav wave signals) which might not be easily identified by current detectors
- Furthermore, non-monotonic behavior of corrections (implications for, e.g. PPE)


-Pheno: Interaction between differently scalarized stars induces a dynamical readjustment of charges to become equal

- ALIGO will have a hard time digging this out for moderate and low mass binaries
- EM signals can potentially save the day


EM signals can potentially save the day

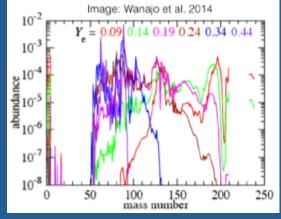


- Luminosity 'sweep-up' in frequency will be different from that of GR
- 'pulsar' observations allow (indirect) grav wave detection to continue

Fast-forward and outwards...

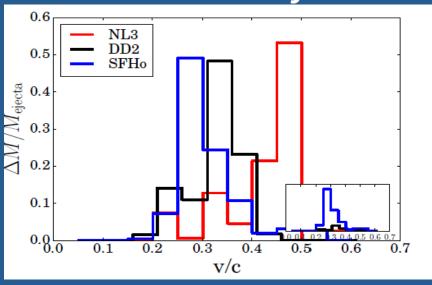
 Neutrino characteristics are similar across al EOS, but ejecta properties are quite different

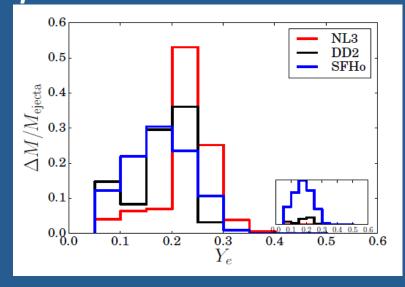
Ejecta & possible associated emission

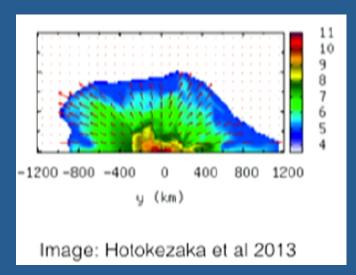

Ejecta leaves the cental engine, is neutron rich

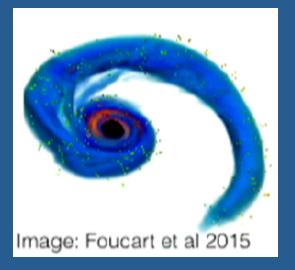
 capture yields radioactive elements which would decay and yield a rather isotropic signal.

Result of nucleosynthesis depends on: velocity, amount and


electron fraction (Y_e) of ejected material


Sufficiently small Y_e (< 0.2) strong r-processes,
 yields heavier nuclei (lantanides). Higher optical
 depth → week delay and IR counterpart.
 Otherwise lighter nuclei, day delay & optical counter.




NS-NS (equal mass) mergers \rightarrow large range of Y_e and temperatures, rather isotropical, but amount highly dependent on EOS (softer EOS, higher mass) [Hotokezaka etal, Palenzuela etal]. Unequal mass case more similar amount BH-NS (if disrupted). Low Y_e, low temperatures, equatorial/axisymmetric distribution. [Foucart etal]

Ejecta & properties

Also, other ejecta from winds driven by the eventual accretion disk is possible, though
this is less neutron rich [Fernandez etal '15] and expected signal would be in the optical.

Summarizing results

- Amount & characteristics of ejecta quite tied to EoS.
 - Very little < 0.001 $\rm M_o$ for stiff EoS, velocity of ejecta ~ similar [0.1 0.4c] & $\rm Y_e$ quite peaked at ~ 0.2
 - On the other hand, enough [0.001-0.01 M_o] for soft EoS [collision takes place deeper in the potential]. Y_e peaked at ~ 0.2 with significant amounts in [0.1-0.2]
 - Supernovae simulations do not seem to get Y_e this low. Also, abundance of ²⁴⁴Pu in deep-sea samples is 1/100 of what would be expected if supernovae does the job but consistent with binary merger rates [Wallner etal '15]

Speculations

- IF GRB130603B is a 'typical case', and decay of r-processes elements indicate very neutron rich ejecta, then if produced by nearly equall neutron stars → EoS lies on the softer side [way out: low mass BHs and/or very high spins]
- Alternatively, it could be produced by a BH-NS system with low mass ratio and/or high spin. Further, this scenario favors stiff EoS.
- → A GW measurement would give masses (see however [Hannam,Brown etal '13] which will help dissentangle which system it is and provide arguments for the EoS (even if not identified in the GW side)

Final words

- Experimental front going strong, lots of activities and plans for the future
- Global efforts towards multimessenger astronomy

 Counterparts provide significant information, which might be required even to answer the most basic questions