

unam

CAFE a new relativistic MHD code

Alejandro Cruz Osorio

Instituto de Astronomía, Universidad Nacional Autónoma de México.

in collaboration with F. D. Lora-Clavijo, UIS, Colombia.

28th Texas Symposium on Relativistic Astrophysics, December 17 2015, Geneva, Switzerland.

General Relativistic MHD equations

The relativistic Magnetohydrodynamics equations are derived from the mass conservation, stress-energy tensor local conservation and the Maxwell equation.

tions
$$\nabla_{\mu}(\rho u^{\mu}) = 0$$

 $\nabla_{\mu}(T^{\mu\nu}) = 0$
 $\nabla_{\mu}(u^{\mu}b^{\nu} - u^{\nu}b^{\mu}) = 0$

$$T^{\mu\nu} = (\rho h + b^2)u^{\mu}u^{\nu} + (p + b^2/2)g^{\mu\nu} - b^{\mu}b^{\mu}$$

Perfect fluid and electromagnetic Stress-Energy tensor

 $\alpha, \beta, g^{\mu\nu}$ Are the space-time parameters

$$b^{0} = \frac{WB^{i}v_{i}}{\alpha}$$

$$b^{i} = \frac{B^{i} + \alpha b^{0}(v^{i} - \frac{\beta^{i}}{\alpha})}{W}$$

Magnetic field component comoving to the fluid

W is the Lorentz factor

 $h = 1 + e + p/\rho$ Specific enthalpy $p = \rho e(\Gamma - 1)$ Pressure

Space-time and the physical quantities

$$ds^{2} = -(\alpha^{2} - \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$

- α -> Lapse function
- β_i -> Shift vector
- γ_{ij} -> Three metric

We can construct a base of the space-time

$$e_{(\mu)} = \{\mathbf{n}, \partial_{\mathbf{i}}\}, \qquad \mathbf{n}_{\mu} = (-\alpha, \mathbf{0}, \mathbf{0}, \mathbf{0})$$

We project the density current and energy-momentum tensor on this base, obtaining the physical quantities on the spacial hypersurfaces and along the proper time direction.

$$D \equiv -\mathbf{J} \cdot \mathbf{n} = \rho W,$$

$$S_j \equiv \mathbf{T}(\mathbf{n}, e_j) = \rho h^* W^2 v_j - \alpha b^0 b_j,$$

$$E \equiv \mathbf{T}(\mathbf{n}, \mathbf{n}) = \rho h^* W^2 - p^* - (\alpha b^0)^2,$$

$$\tau \equiv E - D.$$

$$J = \rho u^{\mu}, \quad h^* = h + b^2 / \rho, \quad p^* = p + b^2 / 2.$$

We write the ideal MHD in Valencia formulation, where we have a conservative form of the equations and additionally the constraint on the divergence of the magnetic field (no monopoles).

$$\frac{1}{\sqrt{-g}} \left[\partial_t (\sqrt{\gamma} \mathbf{U}) + \partial_i (\sqrt{\gamma} \mathbf{F}^i) \right] = \mathbf{S},$$
$$\nabla \cdot \mathbf{B} = 0,$$

Where the components of the conservative variables U, numerical fluxes F and sources S are:

$$\mathbf{U} = \begin{bmatrix} D\\S_{j}\\\tau\\B^{k} \end{bmatrix} = \begin{bmatrix} \rho W\\\rho h^{*} W^{2} v_{j} - \alpha b^{0} b_{j}\\\rho h^{*} W^{2} - p^{*} - (\alpha b^{0})^{2} \end{bmatrix},$$

$$\mathbf{F}^{i} = \begin{bmatrix} D(v^{i} - \frac{\beta^{i}}{\alpha})\\S_{j}\left(v^{i} - \frac{\beta^{i}}{\alpha}\right) + p^{*} \delta^{i}_{j} - b^{i} b_{j}\\\tau\left(v^{i} - \frac{\beta^{i}}{\alpha}\right) + p^{*} v^{i} - b^{0} b_{j}\\\left(v^{i} - \frac{\beta^{i}}{\alpha}\right) B^{k} - \left(v^{k} - \frac{\beta^{k}}{\alpha}\right) B^{i} \end{bmatrix},$$

$$\mathbf{S} = \begin{bmatrix} 0\\T^{\mu\nu}g_{\nu\sigma}\Gamma^{\sigma}_{\mu j}\\T^{\mu0}\partial_{\mu}\alpha - T^{\mu\nu}\Gamma^{0}_{\mu\nu}\alpha\\0^{k} \end{bmatrix}.$$

The fluxes depends on the conservative variables **U** and primitive variables $\mathbf{w} = (\rho, p, v^i, B^j)$.

The characteristic decomposition of the GRHMD, can be obtain from the Anile (1989) variables $\tilde{U} = (u^{\alpha}, b^{\alpha}, p, s)^{T}$, we the GRMHD take the form $(A^{\alpha})^{\lambda}_{\sigma} \nabla_{\alpha} \tilde{U}^{\sigma} = 0$

$$\lambda = \alpha (v^{x} - \beta^{x} / \alpha),$$

$$\lambda_{\pm} = \frac{b^{x} \pm \sqrt{E}u^{x}}{b^{0} \pm \sqrt{E}u^{0}},$$

$$\lambda_{ms\pm} = \frac{u^{0}u^{x}(1 - \Omega^{2}) \pm \sqrt{\Omega^{2}(\Omega^{2} + (1 - \Omega^{2})((u^{0})^{2} - (u^{x})^{2}))}}{\Omega^{2} + (1 - \Omega^{2})(u^{0})^{2}}.$$

where $\Omega^2 = C_s^2 + C_A^2 - C_s^2 C_A^2$ and $C_A^2 = b^2/E$

Numerical methods

The numerical methods used in CAFE are:

- * The Methods of Lines.
- * Runge-Kutta of the third order.
- * HRSC: HLLE flux formula; minmod, mc, weno5 cell reconstructors.
- * Flux Constrained Transport and Divergence Cleaning methods.
- * We use a root finder to recovery the primitive variables.

CAFE characteristic: - Unigrid in 3D cartesian coordinates

- Fix uniform grid.
- Parallelised with OpenMPI
- Constructed in fortran 90
- Special relativity

We also have a 2D version in hydro ; one in the equatorial symmetry and other in the axial symmetry

Strong relativistic Blast Wave compared with Del Zanna & Bucciantini 2002; Martí & Müller 2003

Hydro tests

ApJS 218, 2015

Smooth Initial Profile Zhang & MacFadyen (2006) and

Radice & Rezzolla (2012)

Cells MM		MC	WEN05	PPM							
Smooth Profile Test											
80											
160	2.11	2.57	2.27	1.90							
320	2.09	2.37	2.30	1.86							
640	2.04	2.18	2.48	1.91							
280 2.00		2.10	2.60	1.95							

Logarithm of the rest mass density for the hot jet model A1 in Martí et al. (1997) at time t = 48.82. Using MINMOD, MC, and WENO5. $v_b = 0.99$, Mach 1.72.

Model C2 in Martí et al. (1997)

 $v_b = 0.99$, Mach 6.

Nonzero Transverse Velocity: Hard Test, using 400, 3200 and 6400 cells in agreement with Zhang & MacFadyen (2006)

Resolution	MM	MC	WENO5	PPM	MM	MC	WENO5	PPM			
Resolution		Flux-C	T Error			Order of	Convergence				
				Test 1							
Δx_1	1.18e-1	1.10e-1	1.14e-1	1.18e-1							
Δx_1	8.09e-2	6.97e-2	7.14e-2	1.02e-1	0.54	0.65	0.67	0.2			
Δx_2	5.20e-2	3.96e-2	3.68e-2	8.21e-2	0.63	0.81	0.95	0.3			
Δx_3	3.05e-2	2.15e-2	1.95e-2	6.39e-2	0.77	0.88	0.91	0.3			
Δx_4	1.65e-2	1.12e-3	9.99e-3	4.95e-2	0.88	0.94	0.96	0.3			
	Test 2										
Δx_1	3.39e-1	3.16e-1	3.15e-1	3.45e-1							
Δx_1	2.25e-1	2.50e-1	2.30e-1	2.35e-1	0.59	0.62	0.65	0.5			
Δx_2	1.47e-1	1.57e-1	1.42e-2	1.53e-1	0.63	0.67	0.69	0.6			
Δx_3	9.41e-2	9.80e-2	8.60e-2	9.87e-2	0.64	0.68	0.72	0.6			
Δx4	5.91e-2	6.04e-2	4.97e-2	6.24e-2	0.67	0.69	0.79	0.6			
	Test 3										
Δx_1	2.10e-2	1.56e-2	1.59e-2	2.09e-2							
Δx_2	1.33e-2	8.86e-3	9.36e-3	1.33e-2	0.65	0.81	0.76	0.6			
Δx_3	8.04e-3	4.76e-3	5.05e-3	8.00e-3	0.72	0.90	0.89	0.7			
Δx_4	4.83e-3	2.48e-3	2.68e-3	4.83e-3	0.73	0.89	0.91	0.7			
Δx5	2.89e-3	1.39e-3	1.40e-3	2.89e-3	0.74	0.89	0.93	0.74			
	Test 4										
Δx_1	1.65e-1	1.51e-1	1.49e-1	1.60e-1							
Δx_2	1.25e-1	1.14e-1	1.12e-1	1.22e-1	0.40	0.40	0.41	0.3			
Δx_3	7.98c-2	7.11e-2	6.76e-1	7.86c-1	0.64	0.68	0.72	0.63			
Δx_4	5.05e-2	4.37e-2	3.98e-2	5.00e-2	0.66	0.70	0.76	0.6			
Δx ₅	3.15e-2	2.57e-2	2.23e-2	3.13e-2	0.68	0.76	0.83	0.6			
				Test 5							
Δx_1	2.26e-1	2.24e-1	2.24e-1	2.94e-1							
Δx_2	1.84c-1	1.58e-1	1.48e-1	2.28e-1	0.47	0.50	0.59	0.3			
Δx_3	1.28e-1	1.04e-1	9.39e-2	1.63e-1	0.52	0.60	0.65	0.44			
Δx_4	8.70e-2	6.62e-2	5.74e-2	1.12e-1	0.55	0.65	0.71	0.5			
Δx ₅	5.41e-2	3.96e-2	3.36e-2	0.68e-2	0.68	0.74	0.77	0.71			
	Test 6										
Δx_1	2.31e0	2.15e0	2.24e0	2.31e0							
Δx_2	1.56e0	1.41e0	1.46e0	1.58e0	0.56	0.60	0.61	0.54			
Δx_3	1.05e0	8.89e-1	9.08e-1	1.07e0	0.57	0.66	0.68	0.56			
Δx_4	6.68e-1	5.33e-1	5.30e-1	6.89e-1	0.65	0.73	0.77	0.6			
Δx ₅	4.13e-1	3.11e-1	2.99e-1	5.50e-1	0.71	0.77	0.82	0.6			
	Test 7										
Δx_1	1.66e-1	1.64e-1	1.67e-1	1.75e-1							
Δx_1	1.14e-1	1.12e-1	1.13e-1	1.22e-1	0.54	0.55	0.56	0.53			
Δx_2	7.32e-2	6.96e-2	7.01e-2	7.94e-2	0.63	0.68	0.69	0.63			
Δx_3	4.47e-2	4.16e-2	4.01e-2	4.88e-2	0.71	0.74	0.80	0.7			
Δx_4	2.58e-2	2.36e-2	2.24e-2	2.89e-3	0.79	0.81	0.84	0.7			
	Test 8										
Δx_1	1.85e-1	1.94e-2	1.96e-1	1.80e-1							
	1.20e-1	1.24e-1	1.23e-1	1.16e-1	0.62	0.64	0.67	0.6			
Δx_2	7.21e-2	7.41e-2	7.22e-2	7.11e-2	0.73	0.74	0.76	0.7			

Current and Future

* We adding the curved space-time; Kerr metric in cartesian coordinates, and general metric.

* We studying the Bondi-Hoyle accretion with a 2D version of CAFE

Lora-Clavijo et al 2015

Cruz-Osorio 2016 (in preparation)

Bondi-hoyle accretion with density gradients

Bondi-hoyle accretion with velocity gradients

* We will have the second version of CAFE that includes a generalised space-time * We will study the magnetised Bondi-Hoyle accretion in 3D

Thanks!

aosorio@astro.unam.mx