

Planck unveils the Sunyaev-Zeldovich effect

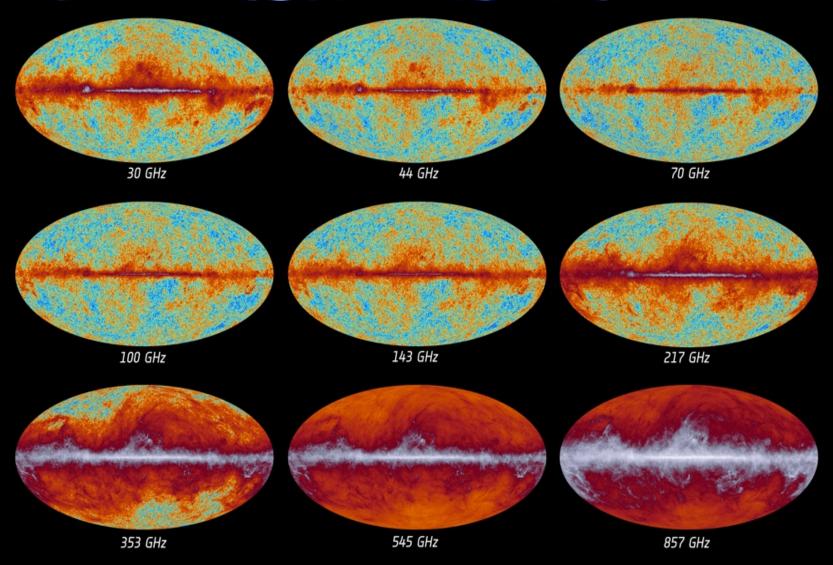
Cosmology with the Planck thermal Sunyaev-Zeldovich effect map

Based on Planck 2015 results: XXII, XXIV, XXVII

J.F. Macías-Pérez

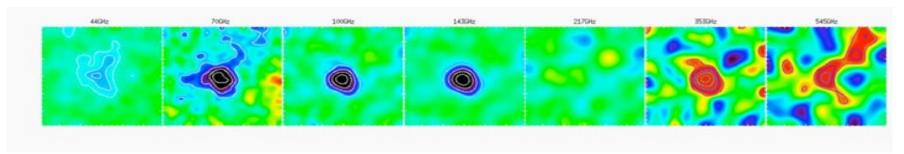
LPSC Grenoble

on behalf of the **Planck Collaboration**

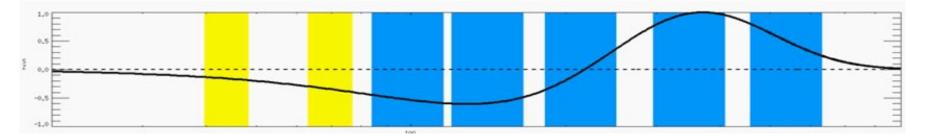

Outline

- y-map reconstruction and characterisation
- cluster physics for cosmology
- cosmology with the y-map
 - -power spectrum
 - -higher order statistics

Planck sky maps



Mapping tSZ effect with Planck



-Inverse Compton between CMB photons and free hot electrons on clusters of galaxies

$$\frac{\Delta T_{TSZ}}{T_{CMB}} = f(x)y = f(x)\int n_e \frac{K_B T_e}{m_e c^2} \sigma_T d\ell \qquad f(x) = \left(x \frac{e^x + 1}{e_x - 1} - 4\right)$$

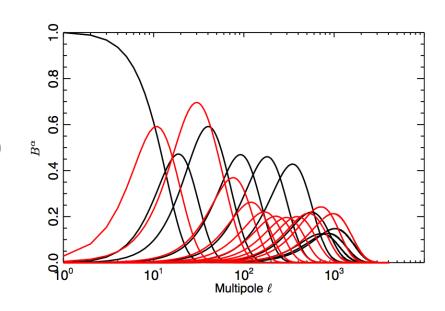
A2319

-The Planck satellite has been designed to map the tSZ signal

From Planck channel maps to a y-map

-Adapted component separation algorithms as in Planck 2013 results XXI:

spectra: preserve tSZ effect and


NILC and MILCA

→ constraints on electromagnetic

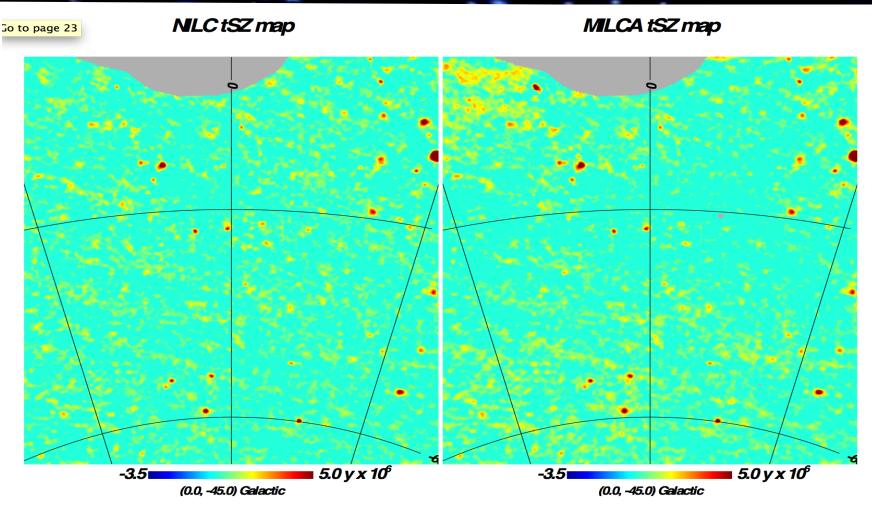
remove CMB

→ simultaneous spatial (pixel domain) and spectral (multipole domain) localisation - updated

- Use full mission HFI channels from 100 to 857 GHz
 - ⇒ 857 GHz used only for ell < 300
- Common resolution of 10 arcmin
- -Validation on simulations

[Remazeilles et al 2011/2012; Hurier et al 2010/2012]

Planck Compton parameter map (y-map)



NILC tSZ map

Planck Compton parameter map II

- Known astrophysical point sources (mainly radio and IR) have been masked out
- For radio sources (negative in the y-maps) blind detection has been used to confirm and extend the mask

Planck y-map: cluster and point sources

Use two independent methods to blindly search for clusters on the y-map:

- Single frequency matched filter (MF) [Melin et al 2006]
- IFCAMEX (MHW filtering) [Lopez-Caniego et al 2006]

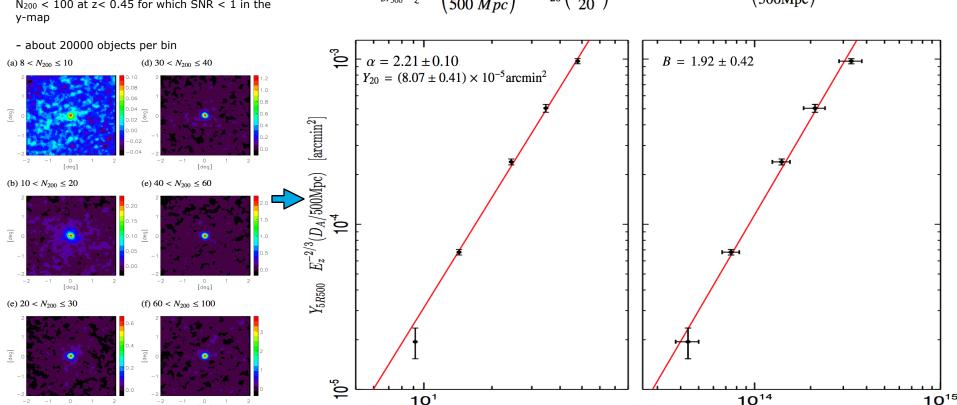
→ number of detected clusters and measured flux consistent with Planck SZ2 catalogue

Outline

- y-map reconstruction and characterisation
- cluster physics for cosmology
 - -power spectrum
 - -higher order statistics

10

A bit of scaling relations


- -SDSS III catalogue of 132684 clusters of galaxies [Wen et al 2012]
- -stack unresolved groups and clusters with $N_{200} < 100$ at z< 0.45 for which SNR < 1 in the

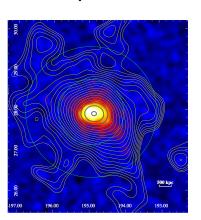
$$Y_{5r_{500}}E_z^{-2/3}\left(\frac{D_A(z)}{500 Mpc}\right)^2 = Y_{20}\left(\frac{N_{200}}{20}\right)^{\alpha}$$

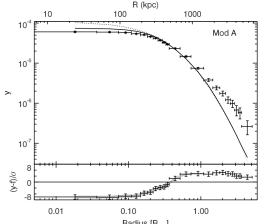
$$Y_{5r_{500}}E_z^{-2/3}\left(\frac{D_A(z)}{500\text{Mpc}}\right)^2 = Y_0 (M_{200})^B$$

 M_{200}

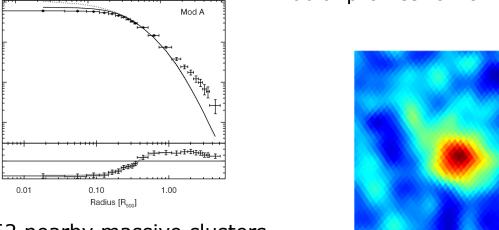
 $[\mathbf{M}_{\odot}]$

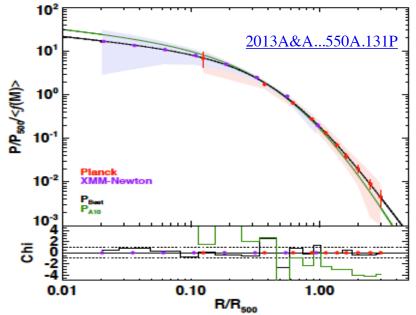
- Find compatible results with Planck intermediate papers [Planck collaboration 2011]
- Using N_{200} - M_{200} results from [Covone et al 2014] we extend the analysis to Y_{5R500} M_{200} - results compatible with self-similar expectation

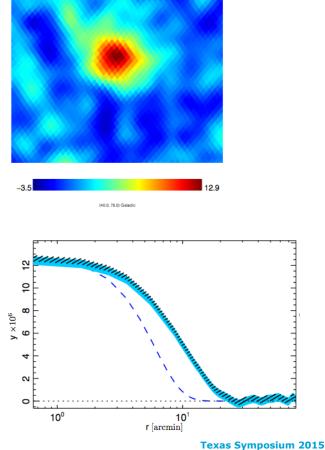

 N_{200}


Measuring pressure profiles

Planck 2013 release

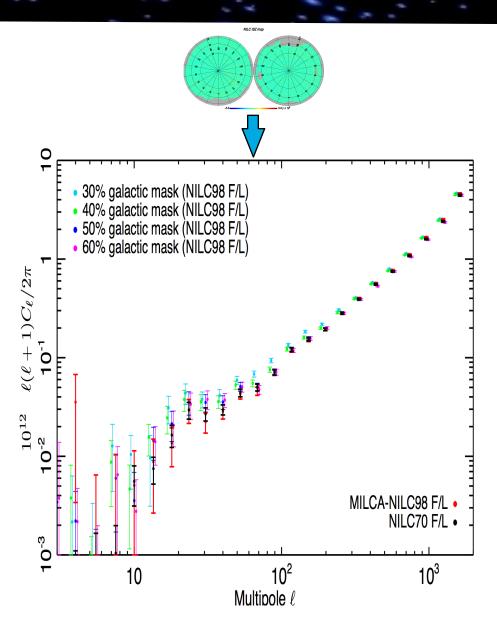

❖ Nearby clusters: up to 3xR₅₀₀ for COMA




Planck 2015 results

❖ Radial profiles for low SNR (>5) clusters

Statistical analysis in 62 nearby massive clusters


Outline

- y-map reconstruction and characterisation
- cluster physics for cosmology
- cosmology with the y-map
 - angular power spectrum
 - -higher order statistics

Power spectrum analysis I : foregrounds

 Compute cross-power spectrum of the FIRST and LAST maps

[Tristram et al 2005]

Main foreground contributions

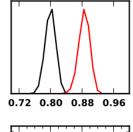
- → Galactic thermal dust at large angular scales mask galactic emission on 50% of the sky
- → cosmic infrared background and point sources at small angular scales use physically motivated model + mask strong sources

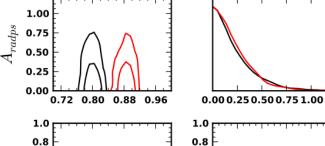
Power spectrum analysis II: modelling

★ Four component model : **tSZ** + clustered **CIB** + **Point sources**

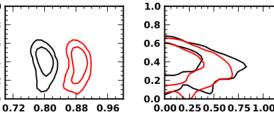
$$C_{l} = C_{l}^{tSZ} + A^{CIB} \times C_{l}^{CIB} + A^{RS} \times C_{l}^{RS} + AI^{RS} \times C_{l}^{IRS} + C_{l}^{CN}$$

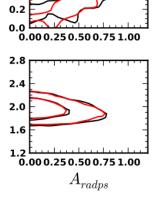
• **tSZ**: 2-halo model; *Tinker et al 2008* mass function; *Arnaud et al 2010* pressure profile; mass bias (1-b) = 0.8 or 0.6

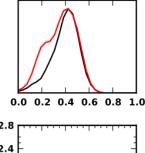

[Taburet et al 2009,2010,2011]

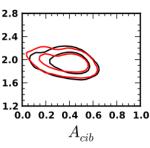

- clustered *CIB*: best-fit frequency auto and cross-power spectra for the 6 HFI bands from Planck 2013 XXX results- 5% uncertainties on cross correlation coefficients accounted for
- **Point sources**: number count models for the radio (Tucci et al 2011) and infrared (Bethermin et al 2012) sources same as for CIB analysis

Power spectrum: cosmological implications

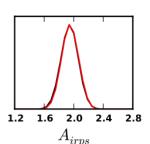

Use a MCMC analysis to fit simultaneously σ_8 , Ω_m , A^{CIB} , A^{IRS} , A^{RS} fixing the mass bias






- Foreground contribution independent of the assumed value for the bias
- σ_8 and Ω_m are strongly degenerated
- $\sigma_8(\Omega_m)^{3/8} =$

$$0.80 \pm 0.015$$
 (68% C.L.) ((1-b) =0.8) 0.90 ± 0.015 (68% C.L.) ((1-b) =0.6)



16

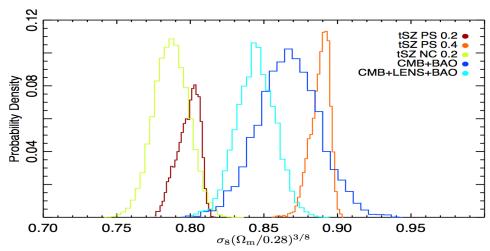
0.72 0.80 0.88 0.96

 $\sigma_{\rm g} (\Omega_{\rm m}/0.28)^{3/8}$

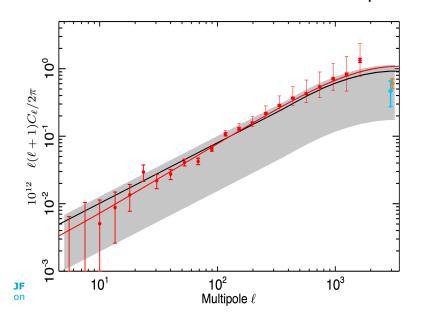
0.2

2.8

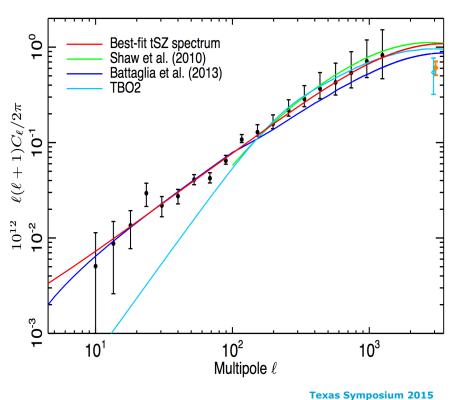
1.6


 A_{irps}

Consistency with CMB analysis and cluster physics uncertainties



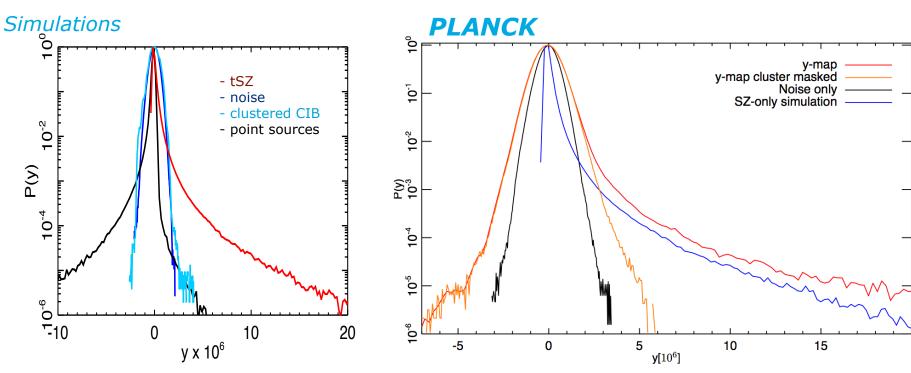
• Measured σ_8 and Ω_m are inconsistent with CMB results unless large bias is assumed


17

However we measure the same tSZ power

Physical model dependency needs to be study in more details: mass function, pressure profile, gas physics, ...

Outline

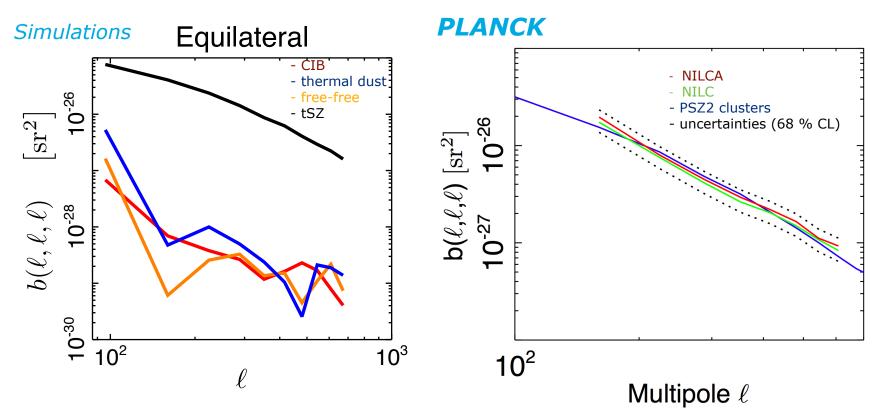


- y-map reconstruction and characterisation
- doing cluster physics with the y-map
- cosmology with the y-map
 - angular power spectrum
 - -higher order statistics

1D-PDF analysis: asymmetry of the distribution

Use a signal-to-noise filter in harmonic space to enhance tSZ signal

After filtering tSZ signal dominates:


- -1D-PDF shows a positive tail consistent with tSZ effect (dominated by PSZ2 clusters)
- from skewness (proportional to σ_8^{10-11}) we find $\sigma_8 = 0.78 \pm 0.02$ (68% C.L.)
- fit to the 1D-PDF using [Hill et al 2014] method we find $\sigma_8 = 0.77 \pm 0.02$ (68% C.L.)

Bispectrum analysis

Compute bispectrum for various configurations

[Lacasa et al 2012]

- -the bispectrum of the y-map is dominated by the tSZ signal
- Planck provides first measurement of the tSZ effect bispectrum
- dominated by the contribution from PSZ2 clusters
- -bispectrum amplitude scales as σ_8^{10-12} and so $\sigma_8 = 0.74 \pm 0.04$ (68% C.L.)

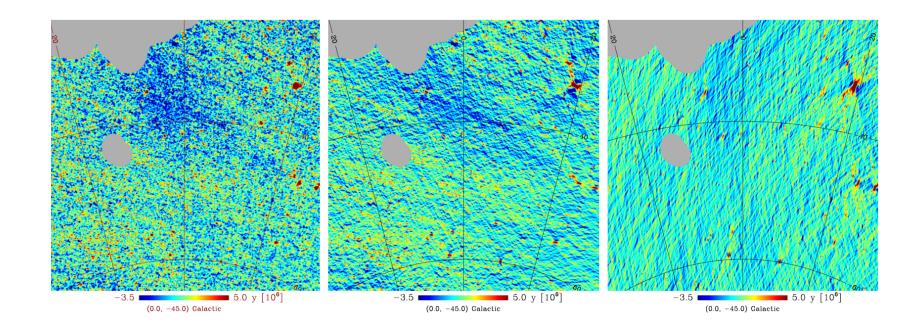
Conclusions

- ✓ Planck allows us to construct nearly full sky Compton parameter maps
- √ We have performed exhaustive characterisation and validation of those maps
- √A wealth of exciting cluster physics can be extracted from those maps (scaling relations, pressure profiles, diffuse medium studies, shocks in merging system, etc)
- √The Planck y-map provides various independent cosmological probes which are consistent with more traditional number counts studies (Nabila's talk)
- ✓ Cosmology with clusters is limited by the understanding and modelling of cluster physics, not by statistics!
- ✓ Planck y-maps have been delivered to the community with the 2015 release (see the Planck Legacy Archive or email us)

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Deutsches Zentrum für Luft- und Raumfahrt e.V.

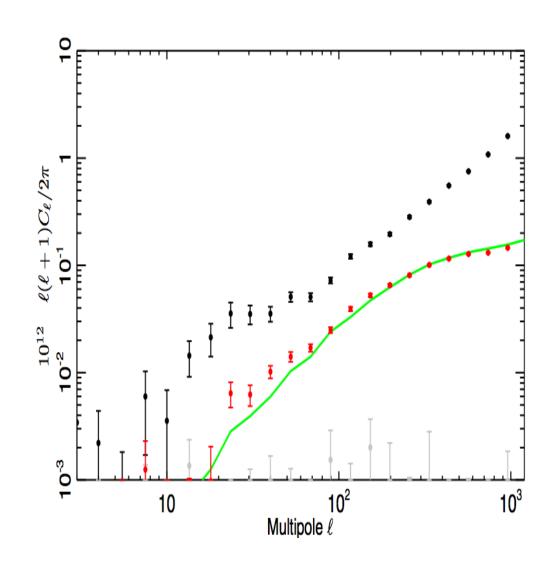
Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.



Backup slides

23

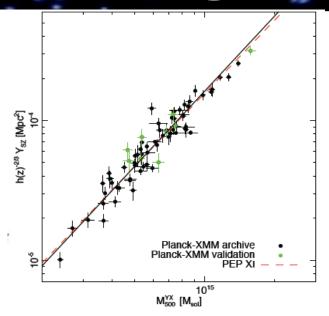
Stripes in the y-map

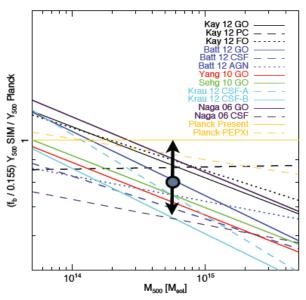


Power spectrum analysis IV: PSZ2 detected clusters

- Simulate detected clusters
- Mask all *Planck* detected point sources from 100-857 GHz
- A significant fraction of the observed signal is due PSZ2 clusters
- Clear indication of signal from unresolved clusters and diffuse structures

Scaling relation and bias




- ●Use 71 clusters in the sample with good XMM data
- •Scaling relation Y_{SZ} - M_{500} is re-extracted with Xray size & position vs M^{YX}

$$E^{-\beta}(z) \left[\frac{D_{\rm A}^2(z) \, \bar{Y}_{500}}{10^{-4} \, {\rm Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) \, M_{500}}{6 \times 10^{14} \, {\rm M}_{\rm sol}} \right]^{\alpha}$$

- lognormal scatter on Y
- Include also a mass bias as observed in numerical simulations

$$\longrightarrow$$
 $(1-b) = 0.8 in [0.7-1.0]$

Halo model for the tSZ effect power spectrum

$$C_l^{tSZ} = C_l^{1halo} + C_l^{2halo}$$

$$C_{\ell}^{1\text{halo}} = \int_{0}^{z_{\text{max}}} dz \frac{dV_{\text{c}}}{dz d\Omega} \int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn(M,z)}{dM} |\tilde{y_{\ell}}(M,z)|^{2} \qquad C_{\ell}^{2\text{halos}} = \int_{0}^{z_{\text{max}}} dz \frac{dV_{\text{c}}}{dz d\Omega} \times \text{Arnaud et al 2010 pressure profile}$$

Tinker et al 2008 mass function

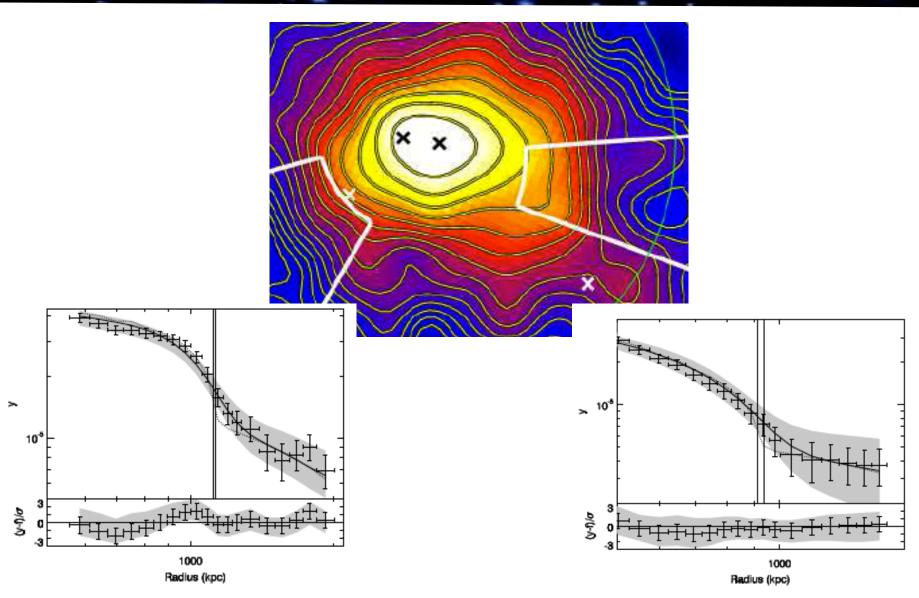
$$\frac{dn}{dM} = f(\sigma) \frac{\bar{\rho}_m}{M} \frac{d \ln \sigma^{-1}}{dM}$$

$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right]e^{-c/\sigma^2}$$

$$\sigma^2 = \int P(k)\hat{W}(kR)k^2 dk,$$

$$C_{\ell}^{2\text{halos}} = \int_{0}^{z_{\text{max}}} dz \frac{dV_{\text{c}}}{dz d\Omega} \times \text{Arnaud et al 2010}$$

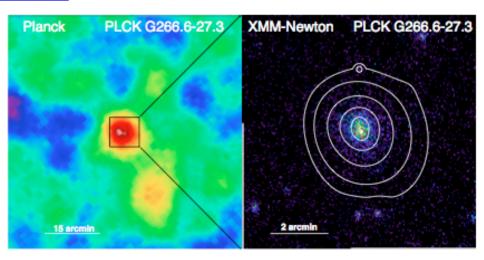
$$\int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn(M, z)}{dM} |\tilde{y}_{\ell}(M, z)| B(M, z)|^{2} P(k, z)$$


$$\tilde{y}_{\ell}(M,z) = \frac{4\pi r_{\rm s}}{l_{\rm s}^2} \left(\frac{\sigma_{\rm T}}{m_{\rm e}c^2}\right) \int_0^\infty dx \ x^2 P_{\rm e}(M,z,x) \frac{\sin(\ell_x/\ell_{\rm s})}{\ell_x/\ell_{\rm s}}$$

$$\begin{split} P(r) &= P_{500} \left[\frac{M_{500}}{3 \times 10^{14} \, \mathrm{h}_{70}^{-1} \, \mathrm{M}_{\odot}} \right]^{\alpha_{\mathrm{P}} + \alpha_{\mathrm{P}}'(x)} \, \mathrm{p}(x) \\ &= 1.65 \times 10^{-3} \, h(z)^{8/3} \, \left[\frac{M_{500}}{3 \times 10^{14} \, \mathrm{h}_{70}^{-1} \, \mathrm{M}_{\odot}} \right]^{2/3 + \alpha_{\mathrm{P}} + \alpha_{\mathrm{P}}'(x)} \quad \mathrm{p}(x) = \frac{P_0}{(c_{500} x)^{\gamma} \, [1 + (c_{500} x)^{\alpha}]^{(\beta - \gamma)/\alpha}} \\ &\times \mathrm{p}(x) \, \, \, \mathrm{h}_{70}^2 \, \mathrm{keV \, cm}^{-3} \end{split}$$

$$[P_0, c_{500}, \Upsilon, \alpha, \beta, \alpha_P] = [3.130h_{70}^{-3/2}, 1.156, 0.3292, 1.0620, 5.4807, 0.12]$$
 $x = r/R_{500}$

Shocks in COMA



PLCK G266.6-27.3 a high redshift cluster

2011A&A...536A..26P

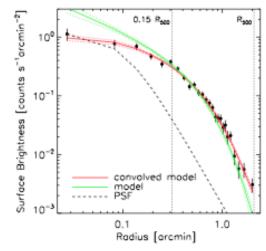
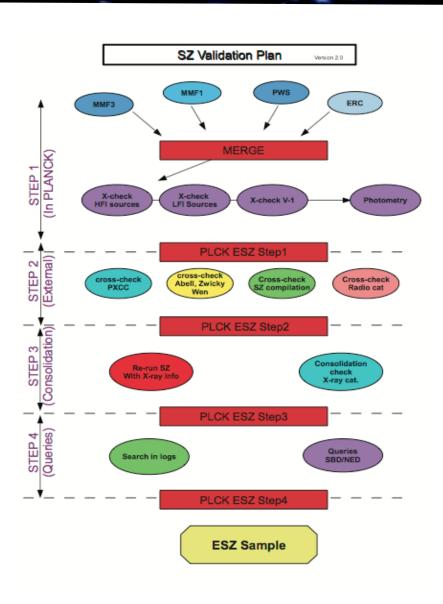


Table 1: Physical properties of PLCK G266.6–27.3 derived from XMM-Newton data.

Parameter	Value		
z	0.94 ± 0.02		
Abundance	$0.44 \pm 0.17 solar$		
R ₅₀₀	$0.98 \pm 0.03 \mathrm{Mpc}$		
M ₅₀₀	$7.8^{+0.8}_{-0.7} \times 10^{14} M_{\odot}$		
<i>Y</i> _X	$1.10^{+0.20}_{-0.17} \times 10^{15} \mathrm{M}_{\odot} \mathrm{keV}$		
T _X	10.5 ^{+1.6} _{-1.4} keV		
$T(< R_{500})$	11.4 ^{+1.4} _{-1.2} keV		
$L_{500}([0.5-2.0] \text{ keV}) \dots$	$14.2 \pm 0.5 \times 10^{44} \mathrm{erg s^{-1}}$		
$L_{500}([0.1-2.4] \text{ keV}) \dots$	$22.7 \pm 0.8 \times 10^{44} \mathrm{erg s^{-1}}$		

Table 2: SZ flux derived from *Planck* data with the reference value indicated in boldface.

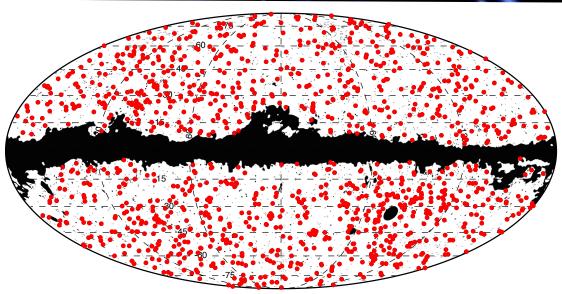

Method	Definition	Value (10 ⁻⁴ arcmin ²)	θ ₅₀₀ (arcmin)
MMF blind	Y ₅₀₀	5.6 ± 3.0	3.3 ± 2.8
PWS blind	Y_{500}	6.5 ± 1.8	3.9 ± 1.6
MMF X-ray prior	Y_{500}	4.1 ± 0.9	fixed
PWS X-ray prior	Y_{500}	5.3 ± 0.9	fixed
MILCA	$Y_{ m tot}$	5.9 ± 1.0	

Notes. Uncertainties on the blind values take into account the size uncertainty.

Very peculiar cluster: very luminous in Xrays and very massive with respect to previously known clusters at z>0.5

The all sky Planck tSZ catalogue

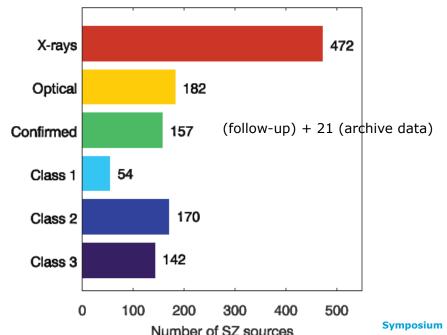
Extraction methods:


- MMF1/3
- Powell snakes
 Artifacts and Planck sources
- SSO objects
- cold cores, radio and IR sources Component separation methods:
- MILCA
- NILC

X-ray data

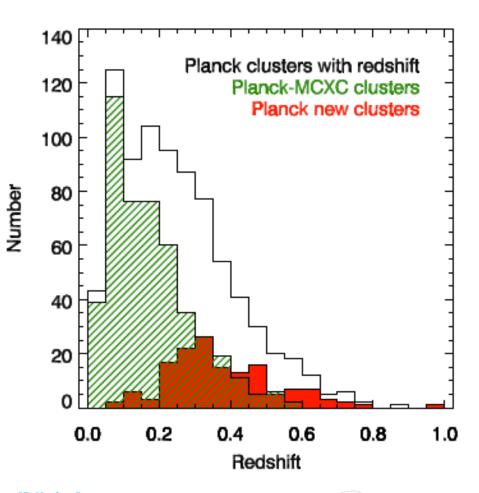
- XMM ROSAT
- RECESS MCXC catalogue Optical data:
- MaxBCGtSZ data:
- AMI

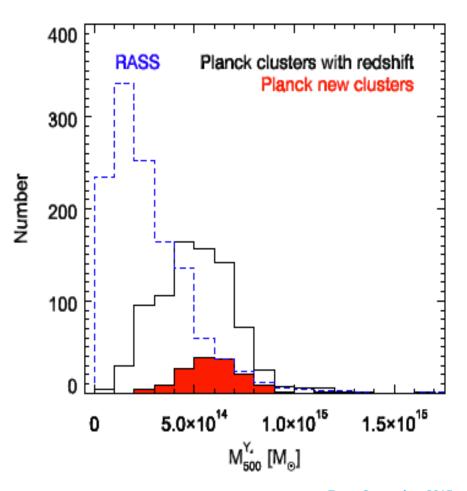
The all sky Planck tSZ catalogue



2013arXiv1303.5089P

Catalogue of cluster candidates over 84 % of the sky


- -1227 clusters & candidates
 - •683 previously known
 - •178 new clusters
 - 366 candidates
- -z in [0-1]
- -M in [1~20] 10¹⁴ M_{sun}
- -Mmed $\sim 3.5 \ 10^{14} \ M_{sun}$
- see Planck 2013 XXIX



The all sky Planck tSZ catalogue

Planck new clusters populate high end of the distribution in redshift and mass

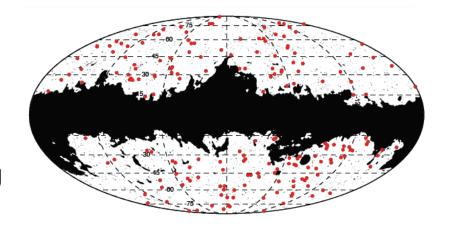
Cluster number counts

The number of clusters as a function of mass and redshift depends strongly on cosmological parameters

$$\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz \, dM_{500} \, d\Omega}$$

- •We take as a reference the Tinker et al 2008 mass function
- We use scaling relations Y-M based on a sample of 71 Planck clusters
- Selection mass is obtained from Planck noise maps
- We use a S/N selected sample of 189 PSZ clusters
- Alternative scenarios are considered

The Planck cluster cosmological sample



- -Selected sample from a compromise between purity and large number of clusters
- -Considered only the cleanest 65 % of the sky

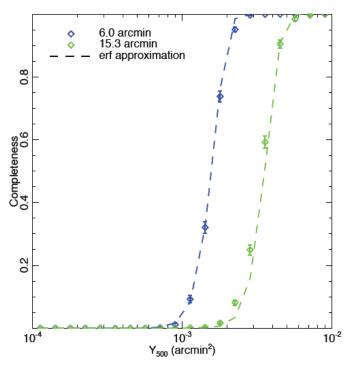
√189 clusters with S/N > 7 in
MMF3

- √ 188 clusters with redshift
- √71 of them were used for scaling relation

→ well characterized SZ selected sample

Completeness

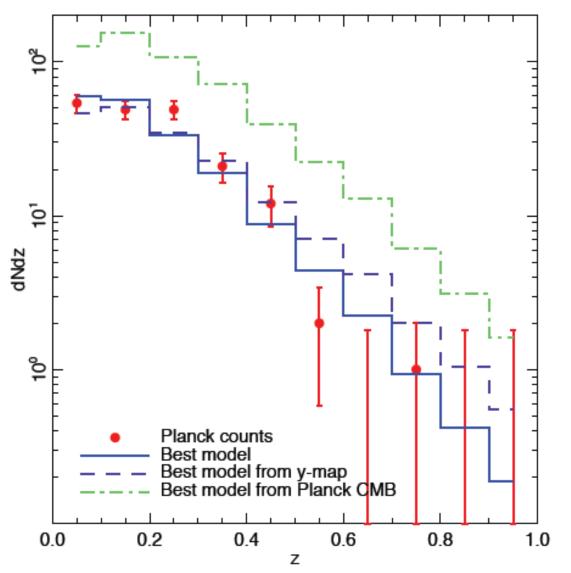
- Noise maps from MMF method are obtained over all detection patches
- -Noise for each filter size


$$\longrightarrow \sigma_{Y_{500}}(\theta_{500}, l, b)$$

-Use as a reference analytic completeness

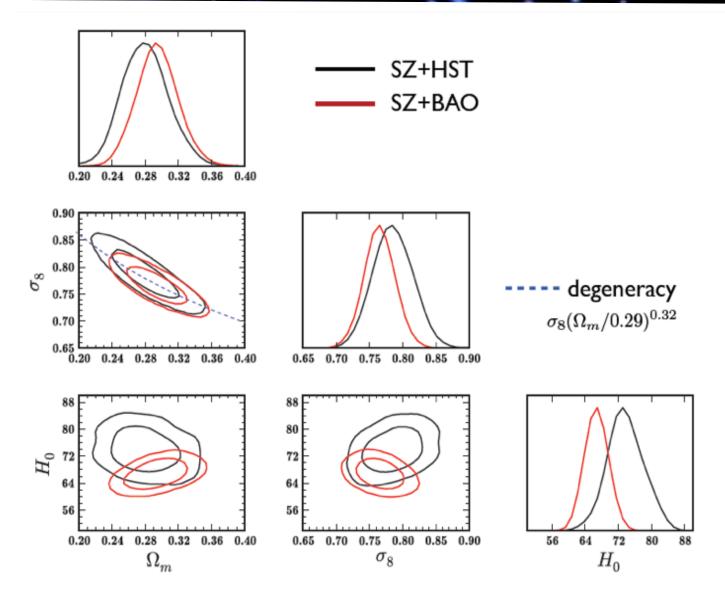
$$\chi_{\text{erf}}(Y_{500}, \theta_{500}, l, b) = \frac{1}{2} \left[1 + \text{erf}\left(\frac{Y_{500} - X \sigma_{Y_{500}}(\theta_{500}, l, b)}{\sqrt{2} \sigma_{Y_{500}}(\theta_{500}, l, b)} \right) \right]$$

-Alternatively we cross check using Monte Carlo simulations



Planck cluster number counts

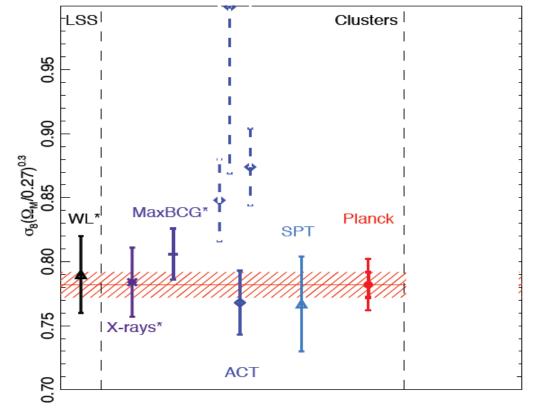
2013arXiv1303.5080P



We use a MCMC likelihood analysis to compare data and model

- ▶ We fit for σ_8 , H0, Ω_m , ns, Ω_b
- ▶Y*, α, σ_{log Y500} are considered as nuisance parameters with Gaussian priors
- ►We consider BBN priors and fix [1-b] = 0.8

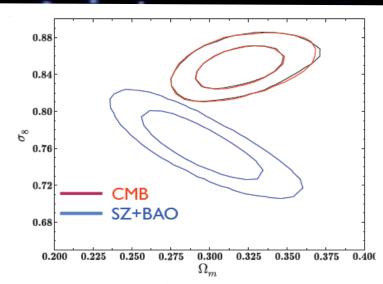
Constraints on cosmological parameters

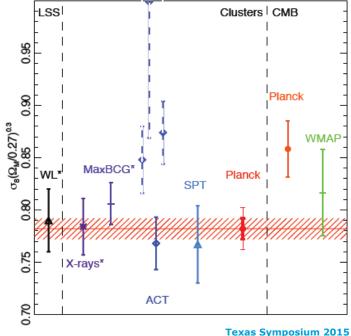

Consistency checks

- Cosmological results do not depend on:
 - -the choice of the S/N (7/8)
 - -prior assumptions (BA0/ HST)
 - -mass function (Tinker et al/ Watson et al)
 - -prior on mass bias

Consistency between
 tSZ based results

	$\sigma_8(\Omega_m/0.27)^{0.3}$	$\Omega_{ m m}$	σ_8	1-b
Planck SZ +BAO+BBN	0.782 ± 0.010	0.29 ± 0.02	0.77 ± 0.02	0.8
Planck SZ +HST+BBN	0.792 ± 0.012	0.28 ± 0.03	0.78 ± 0.03	0.8
MMF1 sample +BAO+BBN	0.800 ± 0.010	0.29 ± 0.02	0.78 ± 0.02	0.8
MMF3 S/N > 8 +BAO+BBN	0.785 ± 0.011	0.29 ± 0.02	0.77 ± 0.02	0.8
Planck SZ +BAO+BBN (MC completeness)	0.778 ± 0.010	0.30 ± 0.03	0.75 ± 0.02	0.8
Planck SZ +BAO+BBN (Watson et al. mass function)	0.802 ± 0.014	0.30 ± 0.01	0.77 ± 0.02	0.8
Planck SZ +BAO+BBN $(1 - b \text{ in } [0.7, 1.0])$	0.764 ± 0.025	0.29 ± 0.02	0.75 ± 0.03	[0.7,1]


Comparison to CMB results



- 3 sigma tension with CMB measurements
- ullet CMB finds larger values of σ_8 and Ω_m

Two options:

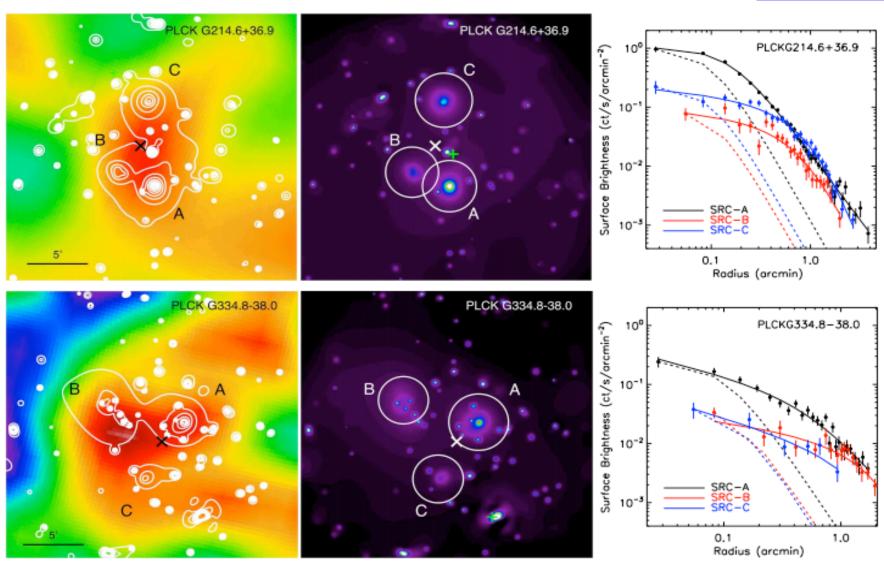
- \blacktriangleright Larger σ_8 value from clusters by changing scaling laws (so far based on M^{YX}) and /or mass bias (1-b = 0.55 solves the problem)
- \blacktriangleright Smaller σ_8 value from CMB by changing initial power spectrum and/or transfer function (massive neutrinos?)

The COMA cluster

2013A&A...554A.140P

High sensitivity maps of nearby clusters like COMA: reliable outskirt detection

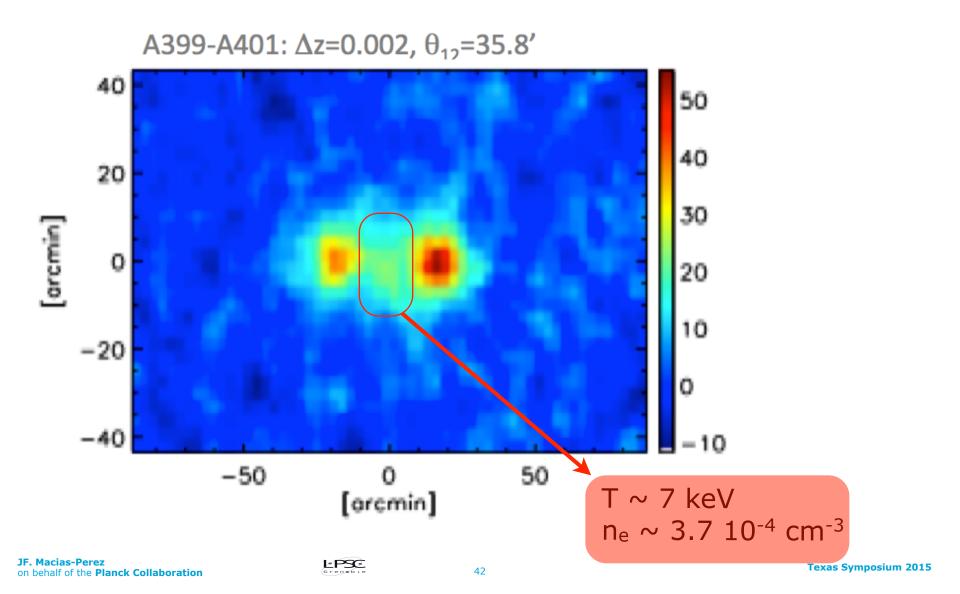
PLANCK


HST visible

PLANCK tSZ (colors) & XMM (contours)

Multiple cluster systems

2013A&A...550A.132P



Matter bridge on mergers

Planck observe a matter bridge between A399-A401

2013A&A...550A.134P

