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High energy sources: non-thermal particles, 
fast variability (= very fast acceleration)

Mrk 421 GRB light curve

blazar PKS 2155-304



 Crab nebula flares
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Tavani&et&al.&2011&
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Crab flares
• Few times per year 
• Random 
• Flux increase by 40  
• 100 MeV - 1GeV 
• lasts for a day (<< dynamical time) 
• periodicity?
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flare spectrum 
break ~ 400 

Nearly monoenergetic!



Upper limit to synchrotron frequency
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- Same as Fermi acceleration on inverse gyroscale 
(requires  very efficient scattering, stochastic 
acceleration: eta << 1) 
- Typically eta < 10-2 for stochastic shock acceleration: 
this excludes stochastic acceleration schemes.

Accelerating E-field < B-field 
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Very demanding conditions on 
acceleration

• Acceleration by E ~ B (energy gain & loss on one gyro radius) 
• on macroscopic scales >> skin depth 

• acceleration size ~ thousands skins 
• acceleration size ~0.1 -1 of the system size (in Crab) 

• Few particles are accelerated to radiation-reaction limit - 
gamma ~ 109 for Crab flares (NOT all particles are 
accelerated) 

• Slow accumulation of magnetic energy, spontaneously 
triggered dissipation 

• (relativistic bulk motion)
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Explosive Reconnection in relativistic plasmas



 The inner knot of Crab nebula
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The Crab Inner knot
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Rudy +, 2015
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Rudy +, 2015

Scales ~ 0.5’’ (light day)



Shock modeling
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Kompaneets  
approximation
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Inner knot

• Location: The knot is on the same side of the pulsar as the Crab jet, along the 
symmetry axis, on the opposite side as the brighter section of the Crab torus. 

• Size: The knot size is comparable to its separation from the pulsar.  Only 
models with  σ < 1 agree

• Elongation: The knot is elongated in the direction perpendicular to the 
symmetry axis.  Only models with  σ < 1 agree

• Brightness peak: The observations indicate that the brightness peak is 
shifted in the direction away from the pulsar. 

• Polarization: The knot polarization degree is high, and the electric vector is 
aligned with the symmetry axis.

• Luminosity: Taking into account Doppler beaming, the observed radiative 
efficiency of the inner knot is fairly low

• Variability: The knot flux is anticorrelated with its separation from the pulsar.

 Not a sight of gamma-ray flares.
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How to make Crab flare
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Large scale simulations - formation 
of high-sigma regions

• Initially, in the simulations sigma ~ few, increases to ~40. 
• Cranfill effect: BΓrv ≈ constant
•
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color: value of sigma, 
Porth +, 2014
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Large scale simulations
• Toroidally-dominated B-field are unstable to large-scale 

kinks 

• Parallel currents attract. Can flux merger be the source of 
Crab flares?
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Porth +, 2014
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2D force-free state with

• Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, +  in prep.) 

• Similarity to Stanford group (Nalewajko’s talk)
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 Collapse of stressed magnetic X-
point in force-free plasma 
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• explosive dynamics on Alfven time 
• slow initial evolution 
• Starting with smooth conditions 

• Finite time singularity
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High-sigma PICs and fluid 
simulations agree

Large region of E~B, growing with time
High sigma PICs look similar to force-free



Can produce power-laws

20
PIC simulations by Sironi
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Acceleration in X-point collapse

• Highly efficient acceleration by E ~ B 
• Acceleration starts abruptly, when reaching charge 

starvation.  
• During collapse current density grows 

• But J< 2 n e c - not enough particles to carry the current 

• E-field grows 

• Condition for charge starvation:                                    (not too 
demanding for Crab)
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p=2.2
sigma=85

2.Collapse of a system of magnetic 
islands

The first panel is at time=5.625, second at 11.25
, third at 16.875 and fourth at 22.5
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Current attraction: two stages: 
``Free-fall’’ and ``slow-resistive’’
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Initial attraction due to large-scale stresses 
Quasi-steady (repulsion by the current sheet) - slow resistive reconnection 
Two stages of particle acceleration: fast-impulsive and slow-resistive.



Inverse cascade 
• Zrake ’15 argued that island 

merger creates self-similar inverse 
cascade.  

• Merger of islands into larger ones, 
up to box size 
• Conservation of area 

• Conservation of axial magnetic flux 
• Conservation of helicity 

•                           fraction of 
magnetic energy  is dissipated in 
each step
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Best case scenario

• High-sigma regions on the wind, but not too high:                                    

• Post-shock  
• Post-shock sigma amplification in decelerating flow:           
σf ~100-500 

• Kink instability: formation of current tubes 
• Initial stage of  current tube merger: X-point collapse 
• Particle acceleration to 
• Can easily reach
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σw ∼ 10 − 100. 
γT = γw / σw

γmax ≈ γT σf2 
� ⇠ 109 � �w�

5/2
w � �w�w



Where in Crab and AGNs? 
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Komissarov & Lyutikov, 2011
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Conclusion

Reconnection in magnetically-dominated plasma  
• can proceed explosively 
• efficient particle acceleration 

• is an important, perhaps dominant for some phenomena, 
mechanism of particle acceleration in high energy sources.
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2.b island merger triggered by 
external perturbation

• Two ways to trigger fast  
reconnection: 
• development of tearing-like mode  

• external compression

32

Stressed magnetic
 islands:



Particle acceleration in island 
merger

• For sigma < 100 spectrum is soft, few particles are 
accelerated to gamma >> sigma
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v

Sweet-Parker-like picture

Most particles leave via jets, only few chosen one stay accelerated



Particles are accelerated by the 
reconnecting E-field near X-point
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Particles are accelerated by the 
reconnecting E-field near X-point

E ⇠ B / t

✏ / t2



Spectra as functions of sigma

• comparison of spectra between avg sigma=85 and 850 
• slope is harder for higher sigma -> running in energy issues
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gammamax >> sigma!

if �  100 ! ↵ > 2



gamma ~ 109?

• Potential available 
• (just need to collapse at ~ c at scale L)  
• It seems, for large L the forced reconnection changes a 

regime -> island dominated 

• Acceleration seems to drop down beyond some L 
• Optimal regime: sigma ~ 100, L/delta ~ 100-1000

36
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Acceleration in X-point collapse

• Very hard spectrum: alpha =-1. 
• All the energy is in the high energy particles 
• All particles are accelerated (the acceleration region 

grows with the speed of light) 

• But we need gamma ~ 109

38
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Acceleration in X-point collapse

• Very hard spectrum: alpha =-1. 
• All the energy is in the high energy particles 
• All particles are accelerated (the acceleration region 

grows with the speed of light) 

• But we need gamma ~ 109
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1.The X-point

• Unstressed X-point is stable to short wave length 
perturbation
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Compare with Colorado group

•Tearing mode instability of current 
sheet. 
•All scales related to delta - smallish 
potential @ skin (Hantao’s talk) 
•Large island merger: inflow 
velocities << c 
•All particles accelerated (gamma < 
sigma) 
•Typically tearing does not lead to 
global reconfiguration (sawtooth)
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Bplane=0

Eout-of-plane vin

voutvout

Uzdensky et al.: Accelerate in 
a region where B is small,  with 
E >B, emit where B is large.


