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High energy sources: non-thermal particles,
fast variability (= very fast acceleration)

Mrk 421 GRB light curve
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Crab nebula flares

- 4-day flare 3
. Sept 2010 + ]
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Tavani et al. 2011




Crab flares

e Few fimes per year c10°
e Random

e Fluxincrease by 40

e 100 MeV - 1GeV

e |asts for a day (<< dynamical time)
e periodicity?
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Upper limit to synchrotron frequency

Accelerating E-field < B-field A

de
elbic = neBc =
2;7 3 Om2c3
 — 236 MeV.
€

B2”72

- Same as Fermi acceleration on inverse gyroscale
(requires very efficient scattering, stochastic

acceleration: eta << 1)
- Typically eta < 10-2for stochastic shock acceleration:

this excludes stochastic acceleration schemes.




High sigma model of pulsar
wind nebulae (Lyutikov 2010)

- Lyutikov (2010): 100 MeV is still too much.

ey | - Ideal flow in the bulk, dissipation on
boundary

- "We propose that [...] the excessive magnetic flux is

destroyed in a reconnection-like process*

High sigma model of PWNe
- No shocks! (Acceleration in reconnection)
- Relativistic bulk motion of emitting plasma




Very demanding conditions on
acceleration

Acceleration by E ~ B (energy gain & loss on one gyro radius)
on macroscopic scales >> skin depth

e qacceleration size ~ thousands skins

e qacceleratfion size ~0.1 -1 of the system size (in Crab)

Few particles are accelerated to radiation-reaction limit -
gamma ~ 107 for Crab flares (NOT all particles are
accelerated)

Slow accumulation of magnetic energy, spontaneously
triggered dissipation
(relativistic bulk motion)

e — T




Very demanding conditions on
acceleration

e Acceleration by E ~ B (energy gain & loss on one gyro radius)
e onh macroscopic scales >> skin depth

e qacceleration size ~ thousands skins

e qacceleratfion size ~0.1 -1 of the system size (in Crab)

 Few particles are accelerated to radiation-reaction limif -
gamma ~ 107 for Crab flares (NOT all particles are
accelerated)

e Slow accumulation of magnetic energy, spontaneously
triggered dissipation
e (relativistic bulk motion)

Explosive Reconnection in relaftivistic plasmas



The inner knot of Crab nebula




The Crab Inner knot

Rudy +, 2015




Scales ~ 0.5” (light day)
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Shock modeling

Kompaneets
approximation
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Inner knot

¢ Location: The knot is on the same side of the pulsar as the Crab jet, along the
symmetry axis, on the opposite side as the brighter section of the Crab torus.

e Size: The knot size is comparable to its separation from the pulsar. Only
models with 0 < 1 agree

¢ Elongation: The knot is elongated in the direction perpendicular to the
symmetry axis. Only models with 0 < 1 agree

¢ Brightness peak: The observations indicate that the brightness peak is
shifted in the direction away from the pulsar.

¢ Polarization: The knot polarization degree is high, and the electric vector is
aligned with the symmetry axis.

* Luminosity: Taking into account Doppler beaming, the observed radiative
efficiency of the inner knot is fairly low

* Variability: The knot flux is anticorrelated with its separation from the pulsar.

Not a sight of gamma-ray flares.



How to make Crab flare




Large scale simulations - formation
of high-sigma regions

o —_ \] W &~ o))

0.0 0.5 1.0 1.5 2.0
> . XI(BQ
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Porth +, 2014 o 47’(',0(32
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Initially, in the simulations sigma ~ few, increases 1o ~40.
Cranfill effect: Bl'rv = constant

* Oflareregion > Oshock
L ———




Large scale simulations

e Toroidally-dominated B-field are unstable to large-scale
kinks

Porth +, 2014

e Parallel currents attract. Can flux merger be the source of
Crab flares?
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2D force-free state with
o — constant

B = {—sin(ay), sin(ax), cos(azx) + cos(ay)} By (Atype of the “ABC” flow)

vvvvvvvvvvvv T T T T T T T T T

* Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, + in prep.)

e Similarity to Stanford group (Nalewajko’s talk)
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2D force-free state with
o — constant
B = {—sin(ay), sin(ax), cos(azx) + cos(ay)} By (Atype of the “ABC” flow)

Is it stable?

f>(-point

* Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, + in prep.)

e Similarity to Stanford group (Nalewajko’s talk)




Collapse of stressed magnetic X-
point in force-free plasma  (amsyovaisky)

Dynamics force-free: a? y x
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High-sigma PICs and fluid
simulations agree

Large region of E~B, growing with time
High sigma PICs look similar to force-free



Can produce power-laws
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PIC simulations by Sironi
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Acceleration in X-point collapse

e Highly efficient acceleration by E ~ B

» Acceleration starts abrupftly, when reaching charge
starvation.
e During collapse current density grows

B
I, ~ = L)

4w L
e But J<2n e c-notenough particles to carry the current
4
curlB = —J + 0:E/c
e E-field grows 71
e Condition for charge starvation: a(t) > —— (nof too

1/4
demanding for Crab) 6ot/




2.Collapse of a system of magnetic
islands

o E | | sigma=85

5 Q.0 0.5 1.0 1.0 0.5 0.0
x, |L x. |1

The first panel is at time=5.625, sécond at 11.25
, third at 16.875 and fourth at 22.5
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Current attraction: two stages:
" Free-fall” and ~ " slow-resistive”
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Initial attraction due to large-scale stresses
Quasi-steady (repulsion by the current sheet) - slow resistive reconnection

Two stages of particle acceleration: fast-impulsive and slow-resistive.




10° . Y =08
Inverse cascade A
e Irake '15 argued that island o L N\
merger creates self-similar inverse 3 | sl
cascade. P P o
 Merger of islands info larger ones, .| 77~ g =23
up to box size o] e

e Conservation of area

* Conservation of axial magnetic flux 10
e Conservation of helicity

e 1—1/V2=29% fraction of = B
magnetic energy is dissipated in =,
each step |,
1n2 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
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Merger of zero-current flux ropes

*No total current: no overall attraction force
First, resistive effects " eat out” the envelopes (slow)
eAfter ||-current learn of each other - large scale attraction



Best case scenario

High-sigma regions on the wind, but not too high:

ow ~ 10 — 100.

Post-shock YT=yw/ow

Post-shock sigma amplification in decelerating flow:

o; ~100-500

Kink instability: formation of current tubes

Initial stage of current tube merger: X-point collapse
Particle acceleration to Ymax = YT 02

Can easily reach 7y ~ 10° > ’ywai/z > YwOw




Porth+ 2014

Komissarov & Lyutikov, 2011

Dissipation zone @ r < 1pc
(approximately where
) B, ~ B,




Conclusion

Reconnection in magnetically-dominated plasma
e can proceed explosively
o efficient particle acceleration

* is an important, perhaps dominant for some phenomena,
mechanism of particle acceleration in high energy sources.







2.b island merger triggered by
external perturbation

Stressed magnetic
islands:

* Two ways to trigger fast

reconnection:
* development of tearing-like mode *
e external compression




Particle acceleration in island
merger

e Forsigma < 100 spectrum is soft, few particles are
accelerated to gamma >> sigma

Electron horiz O—99—1
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Sweet-Parker-like picture

Most particles leave via jets, only few chosen one stay accelerated

—




Particles are accelerated by the
reconnecting E-field near X-point
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Spectra as functions of sigma

e comparison of spectra between avg sigma=85 and 850
e slope is harder for higher sigma -> running in energy issues

102
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lon spectrum: time76
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Spectra as functions of sigma

e comparison of spectra between avg sigma=85 and 850
e slope is harder for higher sigma -> running in energy issues
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Spectra as functions of sigma

e comparison of spectra between avg sigma=85 and 850
e slope is harder for higher sigma -> running in energy issues

lon spectrum: time76
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gammamax >> sigma!

7 dN/dy
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gamma ~ 107?

 Potential available @ ~ B[,

* (just need to collapse at ~ c at scale L)
e |t seems, forlarge L the forced reconnection changes @

107 ,
10"
10° 800,1600,3200 skins -
'Pt; -1 (time is the same in L/c)
~. 107 i
=
T 107%F
& 1 0—3 L
1[:]—4 L
107 . . 1
1 10 100 1000
I

e Acceleration seems to drop down beyond some L
e Optimal regime: sigma ~ 100, L/delta ~ 100-1000

regime -> island dominated

E.B

S —

T ——
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 Potential available @ ~ B[,
* (just need to collapse at ~ c at scale L)
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gamma ~ 107?

 Potential available @ ~ B[,
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Acceleration in X-point collapse

e Very hard spectrum: alpha =-1.
e All the energy is in the high energy particles

o All parficles are accelerated (the acceleration region
grows with the speed of light)




Acceleration in X-point collapse

e Very hard spectrum: alpha =-1.
e All the energy is in the high energy particles

o All parficles are accelerated (the acceleration region
grows with the speed of light)
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1.The X-point

e Unstressed X-point is stable to short wave length
perturbation




Compare with Colorado group

Eout-of-plane | vin

*Tearing mode instability of current

sheet.
Bpiane=0 *All scales related to delta - smallish
potential @ skin (Hantao’s talk)
Uzdensky et al.: Accelerate in *Large island merger: inflow

velocities << ¢
*All particles accelerated (gamma <
sigma)

T — —— *Typically tearing does not lead to
global reconfiguration (sawtooth)

a region where B is small, with
E >B, emit where B is large.




