

Multiwavelength Spectral and Polarization Signatures of Shocks in Relativistic Jets

Markus Böttcher
North-West University
Potchefstroom
South Africa

Collaborators: Haocheng Zhang (Ohio Univ. / LANL), Matthew Baring (Rice Univ.)

NORTH-WEST UNIVERSITY
YUNIBESITI YA BOKONE-BOPHIRIMA
NOORDWES-UNIVERSITEIT

Confined Acceleration Zones

- Shock crossings produce net energy gains according to principle of first-order Fermi mechanism.
- Simulation technique due to Ellison & Jones; detailed in Summerlin & Baring (2012).

Most critical parameter: $\lambda = \eta^* r_g = \text{Pitch-angle}$ scattering mean free path

Electron Spectra from Diffusive Shock Acceleration

 $\lambda = \eta^* r_g$ = Pitch-angle scattering mean free path

(Summerlin & Baring 2012)

 $(\beta_{1HT} = \beta_{1x}/\cos\Theta_{Bf1} < 1)$

 $(\beta_{1HT} = \beta_{1x}/\cos\Theta_{Bf1} \sim 1)$

Asymptotic Particle Spectral Index

(Summerlin & Baring 2012)

Radiation Modeling

Electron spectra from equilibrium between acceleration (= injection term in Fokker-Planck equation), radiative cooling, and escape

Radiation using synchrotron, SSC, + external Compton modules of Böttcher et al. (2013)

Electron Energy Distributions

Constraining SSC Model Parameters

- $\eta(p) = \lambda/r_g \sim \eta_1 (p/mc)^{\alpha} \sim \eta_1 \gamma^{\alpha}$
- Multiwavelength modeling to constrain η₁ and α.

• Large η (γ_{max})
needed to move
synchrotron peak $E_{max} \sim \delta m_e c^2 / (\eta \alpha_f)$ into X-rays.

Model Fit to Mrk 501

Model Fit to BL Lacertae

Model Fit to AO 0235+164

AO 0235+164

 $\eta \sim 10^8$ needed at $\gamma_{\text{max}} \sim 10^4$

Plausibly achievable only with η increasing with γ:

$$\lambda = 3 r_q \gamma^2$$

Optical Polarization Angle Swings

- Optical + γ -ray variability of LSP blazars often correlated
- Sometimes O/γ flares correlated with increase in optical polarization and multiple rotations of the polarization angle (PA)

Tracing Synchrotron Polarization in the Internal Shock Model

 Particle Dynamics (Fokker-Planck) and radiationt ransfer (Monte-Carlo) using code of Chen et al. (2011, 2012)

Coupled with

 Time-, space-, and polarization-dependent ray tracing code 3DPOL (Zhang et al. 2014, 2015)

Light Travel Time Effects

Haocheng Zhang (Ohio University / Los Alamos)

Line of Sight (LOS)

Shock positions at equal photonarrival times at the observer

(Zhang et al. 2014, 2015)

Application to 3C279

Simultaneous fit to SEDs, light curves, polarization-degree and polarization-angle swing

MJD-54000

(Zhang et al. 2015)

Application to 3C279

Requires particle acceleration and reduction of magnetic field, as expected in magnetic reconnection!

Coupling to MHD Simulations

- 3D RMHD Simulations (LA-COMPASS)
- Force-Free helical B-field
- Relativistic disturbance (shock) propagating through the jet
- Non-thermal particle injection at shock front
- B-field from RMHD simulations
- 3DPol to trace timedependent synchrotron polarization signature

RMHD Simulations

Highly Relativistic disturbance; low magnetization

Very strong enhancement of B_{ϕ} ; complete re-structuring of B-field

(Zhang et al. 2015)

Parameter Study

- Need moderate magnetization (σ ~ 0.1 1) to produce coherent, but significant changes in polarization signatures
- Slow (Γ ~ 3) shocks may produce erratic polarization fluctuations
- Fast (Γ ~ 10) shocks may produce largeangle PA rotations.

Summary

- 1. Relativistic Shock Acceleration requires strongly momentumdependent pitch-angle-scattering mean-free-path parameter η to be consistent with blazar SEDs ($\eta \sim \gamma^2$).
- 2. Polarization Angle Swings associated with γ -ray flares can be reproduced naturally by a shock-in-jet model with a helical magnetic field structure, without the need for any non-symmetric jet features or motions!
- 3. RMHD simulations indicate that small-scale polarization changes require moderate magnetization (0.1 < σ < 1) where slow shocks produce erratic PA variations; fast shocks produce large-angle PA swings.

Canonical Turbulence Power Spectrum

- Inertial range can span
 1-5 orders of magnitude.
- Doppler resonance condition $\omega = \Omega/\gamma$ may not be satisfied by charges with large gyroradii;
- => increase of diffusive mean free path parameter $\eta = \lambda/r_g$ at large momenta.
- Expect $\lambda \propto p^2$ at long wavelengths, below stirring scale (QLT).

(M. Baring)

Leptonic Blazar Model

Diffusive Shock Acceleration

Particle retention in the shock layer is extremely sensitive to the magnetic field angle w.r.t. the shock normal in relativistic shocks.

Normal Incidence Frame (NIF) de Hoffmann-Teller frame (HT)