Exploring the Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Sergio Petrera, GSSI and L'Aquila University

Exploring the Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Sergio Petrera, GSSI and L'Aquila University

The main inputs to UHECR interpretation

- The Energy Spectrum: two break features the ankle: What is the origin? the end: GZK-effect or Exhaustion of Sources?
- Mass Composition: getting heavier?!
- Arrival Directions: surprisingly isotropic!
- EeV neutrinos and photons: Foteini's talk
 Further Searches: neutrons, monopoles, particle & shower physics, ...

The experimental method

Fluorescence detector: calorimetric UV light tracing Surface Detector array: particle density @ ground

Auger and TA

17-Dec-2015

Event reconstruction

Event reconstruction

UHECR Energy Spectrum

Auger Energy Spectrum

Combined (Infill+Hybrid+SD) Exposure = 50,000 km² sr yr

Auger vs TA 14% 20% er

20% energy scale uncertainty

Auger vs TA

14%

20% energy scale uncertainty

Which Astrophysics Scenario?

Which Astrophysics Scenario?

UHECR Mass Composition

Xmax: our best mass estimator, but... Available only for hybrid events (FD duty cycle ~ 10%)

Auger data from clean hybrid events (strong anti-bias cuts) ⇒ Detector independent measurements.

Texas Symposium

Auger data from clean hybrid events (strong anti-bias cuts) ⇒ Detector independent measurements.

TA distribution is *not* detector independent; Instrumental effects folded into MC.

Fitting distributions PRD 90, 122006 (2014)

EPOS-LHC

log(E/eV) =

19.0-19.1

50

40

30

20

10

500

1000

19.0-19.1

> 9.5

EPOS-LHC

log(E/eV) > 19.5

15

10

p = 0.70

900 1000 500 Fe N

p = 0.53

900 1000

He

p <mark>—</mark> Auger —

logE=17.8-17.9

log(E/eV) = 17.8-17.9-

p = 0.73

EPOS-LHC

300

500

Fitting distributions PRD 90, 122006 (2014)

AugerPrime upgrade

Combining Xmax and spectrum

Astrophysical interpretation in terms of simple scenario

Homogeneous distribution of identical sources of p, He, N and Fe nuclei

• CR injection = power-law + rigidity cutoff

Same basic scenario used in many interpretation papers, e.g. Aharonian, Ahlers, Allard, Aloisio, Berezinsky, Blasi, Hooper, Olinto, Parizot, Taylor, ... Hard/very-hard injection unless nearby sources assumed

Auger combined fit (ICRC 2015):

 125 data points, 6 fit parameters: injection flux norm, spec. index γ, rigidity cutoff Rcut, p/He/N/Fe fractions;p/He/N/Fe fraction.

Best fit found for very hard injection spectra ($\gamma \le 1$) Note: in this region spectral parameters (γ , Rcut) depend on EBL flux and photo-disintegration cross-sections: R. A. Batista et al., arXiv:1508.0182.

A. di Matteo et al., Proc. of 34th ICRC, The Hague (2015)

model SPG	best fit	2nd local min
$J_0 \ [eV^{-1} Mpc^{-3} yr^{-1}]$	$7.17 imes 10^{18}$	4.53×10^{19}
γ	$0.94^{+0.09}_{-0.10}$	2.03
$\log_{10}(R_{\rm cut}/{\rm V})$	18.67 ± 0.03	19.84
рн	$0.0^{+29.9}\%$	0.0%
PHe	$62.0^{+3.5}_{-22.2}\%$	0.0%
PN	$37.2^{+4.2}_{-12.6}\%$	94.2%
PFe	$0.8^{+0.2}_{-0.3}\%$	5.8%
D/n	178.5/119	235.0/119
$D(J), D(X_{\max})$	18.8, 159.8	14.5, 220.5
р	2.6%	5×10^{-4}

SPG = SimProp code + PSB cross-sections + Gilmore EBL

Qualitatively similar results for all models, but model-dependent best-fit parameter values

UHECR Arrival directions

UHECR Sky surprisingly isotropic

Auger and TA Collaborations, ApJ, 794, 172 (2014)

Arrival directions of Auger and TA events above 10¹⁹ eV in equatorial coordinates

Large/Intermediate Scale Anisotropy

4-8 EeV Isotropic distribution, Auger: ApJ 802:111 (2015)

> 8-10 EeV Dipole-like anisotropy:

Auger: (7.3 ± 1.5) %, p=6.4 10⁻⁵ *Al Samarai, ICRC 2015* Auger and TA (6.5 ± 1.9) % (p=5 10⁻³) *Deligny, ICRC 2015*

Observed change of phase in RA-analysis ⇒ 10 EeV sources are unlikely of Galactic origin

> 57 EeV hot/warm spots
 TA: Ursa Major (5/3.4 σ pre/post trial), *ApJ* 790:L21 (2014)
 Auger: CenA (3 σ), *APP* 34(2010) 314

Point source searches

no significant excess found Auger Collaboration *ApJ 804:15 (2015)*

Summary and outlook

- Flux suppression above ~40 EeV; GZK effect? source exhaustion?
- Xmax (and its RMS) evolution with energy suggest mass becomes heavier at the highest energies;
- Interpreting data in terms of homogeneous sources: very hard injection $(\gamma \le 1)$ with low cutoff (Rcut < 10^{18.7} V) favoured
- Only small deviations from overall isotropic sky either large deflections by B-fields, e.g. due to heavy primaries or number of sources is very large (and luminosity low)
- Improved knowledge of mass composition is needed: *composition in the suppression region, composition enhanced anisotropies, p-astronomy(?),...* ⇒ AugerPrime