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EGMF – Various Constraints [Neronov and Semikoz, 2009]
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I Resistive decay due to magnetic
diffusion removes short correlation
lengths LB

I LB cannot be larger than
the Hubble Radius

I EGMF cannot be stronger
than galactic magnetic fields

I Non-observation of
intergalactic Faraday
Rotation for radio emisson
from Quasars

I Non-observation of large
scale angular anisotropies of
the CMB

I Lower bound on B from
gamma ray observations?
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EGMF – Lower Bound on B?

Θjet

Θobs

Θext

e
-

e
+

∆

e
+

e
-

D

Gamma rays emitted from a blazar develop an electromagnetic
cascade due to interactions with the Extragalactic Background
Light (EBL) via Pair Production and Inverse Compton (IC)
scattering. The interaction of this cascade with the EGMF results
in several observational features. For example: Point-like sources
appear extensive [Dolag et al., 2009], [Neronov et al., 2010]
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GRPropa

I There are various propagation codes of electromagnetic
cascades in the IGM (e.g. ELMAG [Kachelrieß et al., 2012]),
however the simulations run in 1D, mimicking 3D effects (in
particuar deflections due to magnetic fields) using the
small-angle approximation

I GRPropa is a new software based on CRPropa 3.0
[Alves Batista et al., 2013] which is a full 3D Monte Carlo
simuation including effects due to magnetic fields and
cosmology

I For a thorough analysis different EBL models for both Pair
Production and Inverse Compton scattering are implemented
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GRPropa – Comparison with ELMAG
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GRPropa – Magnetic fields

An important feature of GRPropa is the full implementation of
magnetic fields. As input one can set their

I field strength B,

I configuration (presently: homogeneous or turbulent with a
givenspectrum),

I coherence length,
I helicity (in terms of the maximal value with a

positive/negative sign).
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GRPropa Results: Arrival Directions

Gamma ray arrival directions (1010 eV ≤ Eγ ≤ 1011 eV) for a
source at a distance D = 1000Mpc and energy dependence of the
deflection for B = 10−16 G (left) and B = 10−15 G (right).
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GRPropa Results: Energy Dependence of the Defl. Angle

θ(Eγ) ' 0.05oκ

(1 + zs)4

( B
10−15G

)( Eγ
100GeV

)−1 ( Ds
1Gpc

)( ETeV
10TeV

)−1

[Neronov and Semikoz, 2009]

Dependence of the deflection angle θ on arrival energy Eγ for a
monochromatic source (ETeV = 10TeV) at a distance Ds = 1Gpc
for B = 10−15 G (left) and B = 10−16 G (right).

9 A. Saveliev



Directional Analysis

Sky maps for maximally negative
and positive helicity (left) and no
helicity (top), B = 10−15 G,
LB ' 225Mpc.
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Directional Analysis

I Clear imprint of helicity on the arrival directions of gamma
rays – analysis tool needed.

I Possible approach: Q statistics
[Tashiro and Vachaspati, 2013, Tashiro et al., 2013]
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Directional Analysis
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Q statistics for maximally
negative and positive helicity
(left) and no helicity (top),
B = 10−16 G, LB ' 225Mpc.
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EGMF - Origin
The origin of EGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called Primordial Magnetic Fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.
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Primordial Magnetic fields – Spectral Quantities

The aspect of interest is the distribution of energies on different
scales k, i.e. the magnetic spectral energy density M of the
magnetic fields and the kinetic magnetic spectral energy density U

εB =
1

8πV

∫
B2(x) d3x =

∫ |B̂(k)|2

8π d3k ≡ ρ
∫

Mkdk

εK =
ρ

2V

∫
v2(x) d3x =

ρ

2

∫
|v̂(k)|2d3k ≡ ρ

∫
Ukdk

In addition, for magnetic helicity one can define the spectral
helicity density H by

hB =
1
V

∫
A(x) · B(x) d3x = i

∫ ( k
k2 × B̂(k)

)
· B̂(k)∗d3k

≡ ρ
∫
Hkdk
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Primordial Magnetic Fields - Correlation Function

Aim: Computation of the correlation function for B and v

I Homogeneity: The correlation function cannot depend on the
position in space

I Isotropy: The correlation function only depends on the
magnitude of the spatial separation

In Fourier space this means that the most general Ansatz is
[von Kármán and Howarth, 1938, Junklewitz and Enßlin, 2011]

〈B̂l (k)B̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )M(k)− i

8πεlmjkjH(k)]

〈v̂l (k)v̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )U(k)− iρ

2k2 εlmjkjHK(k)]
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Master Equations for the Time Evolution of M, U and H

〈∂tMq〉 =

∫ ∞
0

(
∆t
{
− 2

3q2 〈Mq〉 〈Uk〉 −
4
3q2 〈Mq〉 〈Mk〉+

1
3

1
(4π)2 q2k2 〈Hq〉 〈Hk〉

+

∫ π

0

[
1
2

q4

k4
1

(
q2 + k2 − qk cos θ

)
sin3 θ 〈Mk〉 〈Uk1〉

]
dθ
})

dk

〈
∂t Uq
〉

=

∫ ∞

0

(
∆t
{
−

2
3

q2 〈Mk〉
〈

Uq
〉
−

2
3

q2
〈

Uq
〉
〈Uk〉

+

∫ π

0

[
1
4

q3k
k4

1

(
qk sin2

θ + 2k2
1 cos θ

)
sin θ 〈Mk〉

〈
Mk1

〉
+

1
4

q4k
k4

1
(3k − q cos θ) sin3

θ 〈Uk〉
〈

Uk1

〉
+

1
(16π)2

q3k2

k2
1

(
−2q − q sin2

θ + 2k cos θ
)

sin θ 〈Hk〉
〈
Hk1

〉]
dθ
})

dk

〈∂tHq〉 =

∫ ∞

0

{
∆t
[

4
3

k2〈Mq〉〈Hk〉 −
4
3

q2〈Mk〉〈Hq〉

−
2
3

q2〈Uk〉〈Hq〉 +

∫ π

0

(
1
2

q4k2

k4
1

sin3
θ
〈

Uk1

〉
〈Hk〉

)
dθ
]}

dk

Definitions:
k1 ≡ q− k
q · k ≡ qk cos θ

Energy/helicity conservation: ∂tεtot = ρ
∫

(∂tMq + ∂tUq) dq = 0
and ∂thB = ρ

∫
∂tHqdq = 0
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Results on the Time Evolution of Primordial Magnetic
Fields without Helicity

I Starting either with
an initial power-law ...

I ... or a concentration
of the spectral
energies on a single
scale the qualitative
result is similar: a
tendence to
equipartition and
both Mq ∝ q4 ∝ L−4

(i.e. B ∝ q 5
2 ∝ L− 5

2 )
and Uq ∝ q4 at large
scales.

[Saveliev et al., 2012]
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I A rough estimate for B ( for the
QCD phase transition) is given by
B(200pc) . 5× 10−12 G
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Results on the Time Evolution of Primordial Magnetic
Fields with Helicity

I Including magnetic
helicity for the same
initial conditions
results in an Inverse
Cascade, a fast
transport of big
amounts of magnetic
energy to large scales.
This is due to helicity
conservation.

[Saveliev et al., 2013]
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I Two regimes are visible: When helicity is small, the
considerations of the non-helical case are valid; once helicity
reaches its maximal value, the behaviour changes dramatically
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Boltzmann Equation

The time evolution of the distribution function is governed by the
Boltzmann Equation which reads (without external forces)

∂t f (x, ξ, t) + ξ · ∇f (x, ξ, t) = C(f )

On the right hand side C(f ) is the so-called Collision Integral
which describes the interaction between particles and which is
usually highly non-linear.

This prevents analytical solutions, but at equilibrium it is C(f ) = 0
and f is Maxwellian:

fM(x, ξ, t) =
ρ(x, t)m 1

2

[2kBT (x, t)]
3
2
exp

{
− m
2kBT [ξ − v(x, t)]2

}
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The Kinetic Consistent Scheme
The starting point is the Maxwellian distribution function fM,
i.e. C(f ) = 0. After a short time τ , up to the second order, one
gets the Taylor Expansion

f (x, ξ, t + τ) ' fM(x, ξ, t) + τ∂t fM(x, ξ, t) +
τ2

2 ∂
2
t fM(x, ξ, t) ,

which, using the Boltzmann Equation, becomes

f (x, ξ, t + τ) ' fM(x, ξ, t)− τ (ξ · ∇) fM(x, ξ, t)

+
τ2

2 (ξ · ∇) (ξ · ∇) fM(x, ξ, t) ,

or
f (x, ξ, t + τ)− fM(x, ξ, t)

τ
+ (ξ · ∇) fM(x, ξ, t)

' τ

2 (ξ · ∇) (ξ · ∇) fM(x, ξ, t) ,
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The Kinetic Consistent Scheme

Integrating this equation with the same invariants as above gives
the corresponding time evolution equation, for example with∫

mξ...d3ξ:

∂t (ρvi ) + ∂k (pδik + ρvivk)

=
τ

2∂k [∂l (pvkδil + pvlδik + pviδkl + ρvivkvl )]

Identifying τ with the relaxation time, one gets the
Navier-Stokes-Equations with all dissipative terms from first
principles, without the necessity of their ad hoc-introduction (as
done usually).
This time evolution equation for ρvi (as well as the others for ρ
and εtot) can be written in the general symbolic form
∂t (ρvi ) +∇ ·Φ = 0, i.e. a continuity equation with flux Φ.
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The Kinetic Consistent Scheme

Therefore the following algorithm for the time evolution is applied
[Chetverushkin, 2008]:

I At time t j the distribution function in each computational cell
centered around xi is Maxwellian,
i.e. f (xi , ξ, t j) = fM(xi , ξ, t j)

I Over the time [t j , t j+1 = t j + τ ] collisionless evolution takes
place, the fluxes for each quantity are calculated, such that
the new values may be obtained for each cell

I At time t = t j+1 the distribution function is instantly
Maxwellized and the procedure is repeated for the next time
step

But what about magnetic fields?
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Application: Outflow of Matter from Galaxies

23 A. Saveliev
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The Kinetic Consistent Scheme

Implementation of magnetic fields is rather difficult due to their
pseudo-vector character. Only recently
[Chetverushkin et al., 2013],[Chetverushkin et al., 2014] this has
been possible by extending the velocity vector v to the complex
plane, v→ v + ivA, where vA is the Alfvén Velocity
vA = B (µ0ρ)−

1
2 .

The Maxwellian distribution function then becomes

fM =
ρm 1

2

[2kBT ]
3
2
exp

{
− m
2kBT |ξ − v− ivA|2

}

The magnetic field may now be obtained using the invariant mξ∗:

B(x, t) =
Im

∫
mξ∗f (x, ξ, t)d3ξ

µ
1/2
0

24 A. Saveliev



The Kinetic Consistent Scheme

Implementation of magnetic fields is rather difficult due to their
pseudo-vector character. Only recently
[Chetverushkin et al., 2013],[Chetverushkin et al., 2014] this has
been possible by extending the velocity vector v to the complex
plane, v→ v + ivA, where vA is the Alfvén Velocity
vA = B (µ0ρ)−

1
2 .

The Maxwellian distribution function then becomes

fM =
ρm 1

2

[2kBT ]
3
2
exp

{
− m
2kBT |ξ − v− ivA|2

}

The magnetic field may now be obtained using the invariant mξ∗:

B(x, t) =
Im

∫
mξ∗f (x, ξ, t)d3ξ

µ
1/2
0

24 A. Saveliev



The Kinetic Consistent Scheme

Implementation of magnetic fields is rather difficult due to their
pseudo-vector character. Only recently
[Chetverushkin et al., 2013],[Chetverushkin et al., 2014] this has
been possible by extending the velocity vector v to the complex
plane, v→ v + ivA, where vA is the Alfvén Velocity
vA = B (µ0ρ)−

1
2 .

The Maxwellian distribution function then becomes

fM =
ρm 1

2

[2kBT ]
3
2
exp

{
− m
2kBT |ξ − v− ivA|2

}

The magnetic field may now be obtained using the invariant mξ∗:

B(x, t) =
Im

∫
mξ∗f (x, ξ, t)d3ξ

µ
1/2
0

24 A. Saveliev



The Kinetic Consistent Scheme

In a similar way as before also the MHD equations can be obtained
(here for ideal MHD), for example:

Im

∫ {
mξ∗∂t fM(x, ξ, t) + ξ · ∇fM(x, ξ, t)

µ
1/2
0

}
d3ξ = 0

→ ∂tB +∇× (v× B) = 0

Im

∫
{m [∂t fM(x, ξ, t) + ξ · ∇fM(x, ξ, t)]} d3ξ = 0→ ∇ · B = 0

The same algorithm as before may be used
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Numerical Implementation - Examples

Spherical explosion without and with magnetic field (homogeneous
in z-direction) [Chetverushkin et al., 2013]
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Application – Sod Test: No Magnetic Field (Mass Density)
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Application – Sod Test: Magnetic Field (Mass Density)
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Application – Sod Test: Magnetic Field (Field Strength)
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Conclusions and Outlook

I GRPropa is up and running, ready to be tested especially
concerning helicity

I The expicit semianalytical computation of the backreaction of
the magnetic field on the medium gives the result of a power
law behavior with Mq ∝ q4 ∝ L−4 (i.e. B ∝ q 5

2 ∝ L− 5
2 ) and

Uq ∝ q4 ∝ L−4 and equipartition at large scales.
I Helicity enhances this effect by creating an inverse cascade

which results in much higher magnetic fields today compared
to the non-helical case

I Kinetic schemes are a powerful and efficient tool to be applied
in astrophysics and cosmology, for example in the context of
the outflows from galaxies. They have been implemented in a
code ready to be tested for different scenarios.
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