Extragalactic Science with CTA

Key Science Projects

ASSOCIATION

CTA: Very High Energy Gamma-Ray Observatory

See Michael Daniel's Talk: Thursday 14:00 (Session 20)

CTA Science Themes

CTA Key Science Projects

Extragalactic KSPs

Theme	Question		Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		v	v	v	v	v	v	v	v	v
	1.2	What are the mechanisms for cosmic particle acceleration?		,	v			v	v	~	v	v
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		,		~				v	v	,
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		,	~	~			W		vv	
	2.2	What are the characteristics of relativistic jets, winds and explosions?		,	~	~	~	W	v		v	
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	,			v	
	3.1	What is the nature of Dark Matter? How is it distributed?	v	w		~						~
Exploring Frontiers in Physics	3.2	Are there quantum gravitational effects on photon propagation?						W	v		v	
	3.3	Do Axion-like particles exist?					v	,			v	

See talks from E. Moulin for DM project and Th. Stolarczyk for Galactic science

Extragalactic Key Science Projects

Targeted Observations

- Active galactic nuclei: VHE physic of AGN, cosmology, UHECRs, fundamental physic.
- Transients: follow up on GRBs and extragalactic transients
- Galaxy clusters: deep observation to probe cosmic rays in clusters

> Extragalactic Survey

• Unbiased survey of ¼ of the extra-galactic sky: for population study and duty cycle, new and unknown sources.

VHE extragalactic sky as of today

- > 67 sources. Strongly biased (most observations motivated by flux level at other wavebands)
- Mostly blazars, 4 radio galaxies, 5 FSRQs, 2 star burst galaxies

Active Galactic Nuclei KSP

- What are the relevant particle acceleration and emission processes?
- How are the different blazar types related?
- What causes the observed variability?
- Where does the VHE emission from radio-galaxies come from?
- > Is there other classes of AGNs emitting gamma-rays?
- What is the spectrum of the EBL and how does it evolves with redshift?
- What is the strength of the IGMF?
- Are AGNs a source of UHECRs?
- What can we say about Lorentz invariance violation?

Active Galactic Nuclei KSP: Variability

- Long term variation:
 - Duty cycle?
 - Quasi periodicity? **
 - Break in the power spectra?

- > Short term variation:
 - Size, location and nature of the emission region?
 - Acceleration and cooling mechanisms?

Active Galactic Nuclei KSP: Spectra

- High-frequency peaked blazars:
 - Leptonic or hadronic origin of the emission?
 - Signature of the interaction of gammaray with the photon fields?
 - Separate intrinsic features from propagation effects (wide range of redshift and source classes)

synch from sec. pairs from pi0 decay

synch from sec. pairs from pi+- decay

> Radio galaxies:

- Where is the VHE emission coming from?
- Does it fit the unification schemes?
 What is the link with blazars?

Active Galactic Nuclei KSP: Probing the Universe

Extra-galactic background light:

- Measurement from mid UV to far infrared with precision 20%
- Evolution up to redshift z>1
- Measurement of the cosmic γ-ray horizon
- Measurement of the Hubble constant

Simulation D. Mazin (CTA Science Case)

Inter-galactic magnetic fields:

- Lower limit or detection?
- Imaging analysis:
 "pair halos" (IGMF > 10⁻¹⁶G)
- Time resolved spectra:
 "pair echoes" (IGMF < 10⁻¹⁶G)

Elyiv et al. 2009 (Phys. Rev. D. 80,2)

Active Galactic Nuclei KSP: Strategy

- Long-term monitoring program
 - Regular observation of 15 VHE AGN of different classes
 - Goal: Light curves over 10 years minimum and time resolved spectra
- High Quality spectrum program
 - 40 AGNs of different classes with redshifts between 0.02 and 1.11
 - Goal: uniform set of high quality spectra
 - Deep observation of two radio galaxies
 - Goal: high resolution spectra, extended emission?
- Flare program
 - Follow up of external triggers
 - Regular monitoring of 80 AGNs of different classes and different redshifts
 - Goal: Catching flares

Transients: Focusing on GRBs

- What is the jet Lorentz factor?
- What can we say about the emission site based on γγ absorption and rapid variability?
- Probing particle emission and radiation for the prompt emission and the after glow.
- Probing EBL, IGMF and LIV

> Follow up on all promising GRBs

LST repositioning 20s

Serendipitous detection More likely with a bigger FoV Divergent pointing?

Clusters of galaxies KSP

- Probing the origin, acceleration and propagation of CRs in clusters
- If detected: spectral and spatial distribution of diffuse component
- If not detected:
 - Hadronic origin of diffuse radio emission is ruled out
 - Limits on AGN injection of protons
- > Prime target for DM searches

- Deep observation of the Perseus cluster
- Multi-purpose target:
 NGC 1275 and IC 310 in FoV
- > With full CTA array

ige 13

Extragalactic survey KSP

- > Unbiased survey of ½ of the extragalactic sky (10 000deg²)
 - Unbiased catalogue of the VHE extragalactic sources
 - High resolution map between 50GeV and 10TeV

CTA FoV ~150 deg²

- 1000h
- Sensitivity 4-7mCrab
- Both sites
- CTA full array
- Completed within 3 years

Unique survey in 100GeV-10TeV energy range

Extragalactic survey KSP: AGN physics

- Measurement of the nearby (z<0.2) BL Lacs luminosity function</p>
 - Need at least 50 sources and an unbiased sample
 - 30-150 foreseen detections from Fermi or UV-Xray extrapolations
- > Goal:
 - Probing the AGN unification scheme and the Blazar sequence
 - Estimate of the extragalactic diffuse gamma-ray background

Extragalactic survey KSP: other benefits

- Reveal extreme blazars useful for EBL and IGMF studies
- > New sources and new sources classes
 - Radio galaxies, star burst galaxies?
 - Clusters of galaxies, Seyfert 2 galaxies, ULIRGs?
 - Dark sources, signature of new physics?
- > Large scale anisotropy of the electron spectrum

Extragalactic survey KSP: Strategy

- Uniform exposure ~6mCrab of 25% of the sky
- Each part of the sky observed several times to average over the sources activity states
- Several highly interesting regions covered (Virgo and Coma clusters, Northern Fermi bubble, Cen A)
- Serendipitous discovery during construction will be used to refine the strategy

Divergent pointing preliminary studies suggest:

- factor 4 increase in full array FoV
- factor 2 degradation in energy and angular resolution
- potential gain in sensitivity for same survey observation time Very interesting for transient searches (GRBs in prompt phase?)

Multi-wavelength and multi-messenger support

- > MWL follow up on transients: AGNs and active sources
- > MWL long term monitoring campaigns targets
- Complete coverage of the extragalactic survey (at least optical)
- MWL and MM agreements and MoUs for alerts
- Redshift campaigns for blazars

- Possibility of CTA dedicated optical telescopes (photometry and polarimetry)
 - Systematic coverage of the targets to identify high and low states of the sources
 - Monitoring of AGNs for alerts of flaring states

Data products and release

> AGNs:

- Continuous on line release of light curves and alerts from flaring monitored sources.
- Regular release of full data set
- Catalogue after first year and final catalogue and maps

> Transients:

- Release of spectra and light curves for detected transients
- Upper limits for all observed GRBs
- Alerts
- Galaxy clusters:
 - Release of a preliminary and later final map and data
- Extragalactic survey:

Summary

- Extragalactic KSPs explore CTA science themes in a coherent manner
- Data release to public after proprietary time (1 year)
- Strong Guest Observer program with ~50% of observing time over the first 10 years
- Legacy of use for the entire astronomical community
 - Catalogues
 - Maps
 - Light curves
- The KSPs will evolve according to the reviews before and during CTA operational period.

Thanks

Back up

CTA Sensitivity

https://portal.cta-observatory.org/CTA_Observatory/performance/SitePages/Home.aspx

CTA angular resolution

https://portal.cta-observatory.org/CTA_Observatory/performance/SitePages/Home.aspx

CTA timing capabilities

CTA angular resolution

https://portal.cta-observatory.org/CTA_Observatory/performance/SitePages/Home.aspx

CTA Off axis sensitivity

https://portal.cta-observatory.org/CTA_Observatory/performance/SitePages/Home.aspx

Short term variability with CTA

> PKS 2155-304 flare in 2006

Aharonian et al. 2007 (ApJ 664L 71A)

Simulation from extension of the red-noise behavior to high frequencies

Measuring Hubble Constant with Gamma-ray

