Improved WIMP scattering limits from the LUX experiment Wing To LUX Collaboration SLAC / Stanford University TEXAS Symposium 2015 16 Dec 2015 # SLAC ### Outline - Large Underground Xenon (LUX) - First Run3 Analysis (90 live-days) - Improved Analysis of Run3 Data arxiv:1512.03506 - Preparation for Run4 (300 live-days) Data Improved WIMP scattering limits from the LUX experiment D.S. Akerib, ^{1, 2, 3} H.M. Araújo, ⁴ X. Bai, ⁵ A.J. Bailey, ⁴ J. Balajthy, ⁶ P. Beltrame, ⁷ E.P. Bernard, ⁸ A. Bernstein, T.P. Biesiadzinski, 1,2,3 E.M. Boulton, A. Bradley, R. Bramante, 1,2,3 S.B. Cahn, 8 M.C. Carmona-Benitez, ¹⁰ C. Chan, ¹¹ J.J. Chapman, ¹¹ A.A. Chiller, ¹² C. Chiller, ¹² A. Currie, ⁴, * J.E. Cutter, ¹³ T.J.R. Davison, L. de Viveiros, A. Dobi, L. Y. Dobson, E. Druszkiewicz, B.N. Edwards, B. C.H. Faham, ¹⁵ S. Fiorucci, ¹¹ R.J. Gaitskell, ¹¹ V.M. Gehman, ¹⁵ C. Ghag, ¹⁶ K.R. Gibson, ¹ M.G.D. Gilchriese, ¹⁵ C.R. Hall, M. Hanhardt, 5, 18 S.J. Haselschwardt, 10 S.A. Hertel, 19, 8, 15 D.P. Hogan, 19 M. Horn, 19, 8, 15 D.Q. Huang, ¹¹ C.M. Ignarra, ^{2,3} M. Ihm, ^{19,15} R.G. Jacobsen, ^{19,15} W. Ji, ^{1,2,3} K. Kazkaz, ⁹ D. Khaitan, ¹⁷ R. Knoche, N.A. Larsen, C. Lee, 1, 2, 3 B.G. Lenardo, 13, 9 K.T. Lesko, 15 A. Lindote, 14 M.I. Lopes, 14 D.C. Malling, ¹¹ A. Manalaysay, ¹³ R.L. Mannino, ²⁰ M.F. Marzioni, ⁷ D.N. McKinsey, ^{19,8,15} D.-M. Mei, ¹² J. Mock, ²¹ M. Moongweluwan, ¹⁷ J.A. Morad, ¹³ A.St.J. Murphy, ⁷ C. Nehrkorn, ¹⁰ H.N. Nelson, ¹⁰ F. Neves, ¹⁴ K. O'Sullivan, ^{15, 19, 8} K.C. Oliver-Mallory, ^{19, 15} R.A. Ott, ¹³ K.J. Palladino, ^{22, 2, 3} M. Pangilinan, ¹¹ E.K. Pease, ^{19, 8, 15} P. Phelps, L. Reichhart, C. Rhyne, S. Shaw, T.A. Shutt, 2,3 C. Silva, V.N. Solovov, P. Sorensen, 5 S. Stephenson, ¹³ T.J. Sumner, ⁴ M. Szydagis, ²¹ D.J. Taylor, ¹⁸ W. Taylor, ¹¹ B.P. Tennyson, ⁸ P.A. Terman, ²⁰ D.R. Tiedt, W.H. To, 1, 2, 3 M. Tripathi, 13 L. Tvrznikova, 19, 8, 15 S. Uvarov, 13 J.R. Verbus, 11 R.C. Webb, 20 J.T. White,²⁰ T.J. Whitis,^{1,2,3} M.S. Witherell,¹⁰ F.L.H. Wolfs,¹⁷ K. Yazdani,⁴ S.K. Young,²¹ and C. Zhang¹² (LUX Collaboration) ### Dark Matter Detection ### **Our Universe** - 4.9% Visible Matter - 26.8% Dark Matter - 68.3% Dark Energy ### Weakly Interacting Massive Particles - Weak! Interaction cross-section $\sigma < 10^{-45} \text{cm}^2$ @ 33 GeV mass - Massive ~ 100 GeV range ### #### WIMP – Xenon interaction - WIMPs scatters off normal matter and imparts small amount of energy - Excited atom releases this energy - Heat (Loss) - Scintillation Light (S1) - Ionization (S2) ## **LUX Collaboration** ### LUX Detector Located 4850 ft (1.5km) underground in the Davis Cavern in Lead South Dakota ### **LUX Detector** ### **Dual Phase Xenon TPC** - Particle interacts with the Xenon and deposites ~ keV of Energy - Prompt Scintillation Light (S1) - Delay & Localized Charge on the top PMT array (S2) - Drift time of the electrons $$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$ - W = 13.7 eV - g1 = Light Collection - g2 = Extraction Eff, Light - L(E) = Lindhard Factor Fraction of Energy Loss to Heat # Notes Original Analysis ### **Original Run3 Analysis** - Exclusion down ~ 6 GeV - Energy threshold: 3 keV (slide2) - 85.3 Live-days with 118 kg of fiducial mass (10k kg-days) - $2 \le S1 \le 30 \text{ Phe}$ - S2 > 200 Phe - Event Radius < 18 cm - 160 Events observed in data after selection cuts 10² m_{WIMP} (GeV/c²) • LUX 10¹ - Xenon100 (225 days) - Xenon100 (100 days) - Edelweiss II 10³ ZEPLIN III 10-44 CDMS II ### Reanalysis: The List #### **PMT Pulses** - Vacuum UV correction between liquid and gas (A.Currie) - Spike Counting for S1 Improved Pulse classification (S.Shaw) - Fixed biases in pulse area measurements (T. Biesiadzinski, S. Shaw) - Improved XY position Reconstruction (C.Silva) - S2 energy from both Top and Bottom Array (C.Silva) - Energy Calibration for Electronic Recoil Events (A.Dobi) - Inclusion of low energy Nuclear Recoil Events (J.Verbus) - Improve background models (B.Tennyson, C.Lee) - Improved signal model full Energy -> S1 / S2 simulation (W.To) - Created a new sensitivity and limits framework using Profile Likelihood Ratio (W.To) ### **Data-Driven Energy Calibration** $$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$ $$S2/E = \frac{n_e}{(n_e + n_\gamma)} \cdot \frac{g_2}{W}$$ and $$S1/E = \frac{n_{\gamma}}{(n_e + n_{\gamma})} \cdot \frac{g_1}{W},$$ ### x-intercept 240 160 80 • $n_v \to 0$; S2/E = g2/W ### Y-intercept $n_{p} \rightarrow 0$; S1/E = g1/W ### **Neutron DD Calibration** - Mono-energetic: 2.45 MeV fired into LUX - Two line segments so the energy of the middle scatter is known - Qy = Charge Yield (S2 Size/E) - Ly = Light Yield (S1 Count /E) - Fit to Lindhard/Berzukov model to get L(E) $$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$ Nuclear recoil energy (keV) ### **Background Model** - Detector Material: Gamma rays from Co-60, K-40, Tl-208, Bi-214 - Global Fit to 3 MeV - Asymmetric source from top and bottom - Internal Background (in Xenon): Ar-37, Kr-85m, Xe-127 ### Wall Background: - Rn222-Pb206 - Occurs on the wall at 24.2-5 cm - Resolution Leaks into below 18 cm - Charge Loss - Inclusion of Wall Bkg increase Fidicial Radius to 20 cm ### Signal Model and Limits - First Result used S1 as a proxy for Energy { E(S1) = 6th Degree Poly } - Noble Element Simulation Technique, M.Sydagzis et al, arxiv:1106.1613 - Implement full NEST simulation in the sensitivity calculation - NEST parameter are derived from DD-data - All parameters including g1, g2 and L(E) are allow to vary in fits # SLAC # Sensitivity Exclusion Calc - Limits calculation switched to physical quantity of cross-section instead of number of events - Signal Model is generated on the fly - Parameters can be varied during fits - Profile over parameter space - Nuisance Parameters - Both Signal Strength and Shape could be changed by the NPs - The kappa factor in L(E) is found to be dominated in Signal Strength - g2 is found to dominated in Signal Shape. - kappa is allowed to for all mass points - g2 only floats above 4 GeV (huge increase in computing time) - Each individual background contribution also have a NP - The likelihood ratio is calculated with all NPs variation so we get a profile of the model parameters (PLR) - "Goodness-Of-Fit" between Data and Background Model ### Re-Analysis Dataset • $1 \le S1 \le 50 \text{ Phd}$ S2 > 150 Phd - Energy Threshold = 1.1 keV - 10 additional days from dataset with tiny amount of Kr-83 from calibration - 95 Live-days x 145 kg = 13800 kg-days (increase of 40%) - Total of 591 events # Maximum Likelihood Fit - 95 Live days * 145 kg of Exposure - Observed 591 Events - Background Model Predicted: 589 Events - Signal Model of various masses are included into the fit with Lindhard k and g2 allowed to float - cross-section for all masses fit to < 1e-4 zb | Parameter | Constraint | Fit value | |---|-----------------|------------| | Lindhard k | 0.174 ± 0.006 | | | S2 gain ratio: $g_{2,\text{dd}}/g_{2,\text{ws}}$ | 0.94 ± 0.04 | - | | Low-z-origin γ counts: $\mu_{\gamma, \text{bottom}}$ | 172 ± 74 | 165 ± 16 | | Other γ counts: $\mu_{\gamma, rest}$ | 247 ± 106 | 228 ± 19 | | β counts: μ_{β} | 55 ± 22 | 84 ± 15 | | 127 Xe counts: $\mu_{\mathrm{Xe-127}}$ | 91 ± 27 | 78 ± 12 | | 37 Ar counts: $\mu_{\text{Ar-}37}$ | - | 12 ± 8 | | Wall counts: μ_{wall} | 24 ± 7 | 22 ± 4 | ### **New Exclusion Limits** Improved Low Mass Threshold lowered to 1.1keV Boron-8 Solar Neutrino. Currently contributes to 0.1 Evt to our Bkg $33~GeV~\sigma=4~x~10^{-46}~cm^2$ Increased exposure of 40% and better background / signal models ### LUX Run4 Data - LUX is currently taking data until the end of 2016 - Additional 300+ live-days of data - Increase exposure by a factor of 4 - Preliminary estimate approximately factor of 2 improvement in WIMP sensitivity - Improved Modeling of the E-field in LUX - Better background models with full 3D information (φ) - Improve treatments of nuisance parameters in order to allow variation at low masses - Large number of events needs to be generated currently - Avoid this by parameterizing s1 and s2 ### Conclusion - Reanalysis of LUX first 90 live-days of data improved the sensitivity by factor of 2 at 33 GeV - Pushed lowest mass limits from 6 GeV to 3.4 GeV - Improvement s from PMT Pulses to Final Limits calculation were implemented - Additional calibration sources allowed us to use data drive methods for background and signal modeling - Work is meant to be carried over to 300+90 live-days of data being collected until end of 2016 - PRD with analysis detail coming soon. - SD and Axion limits are also coming out # Back Up Slides (BUS) # **Exclusion of CMSSM** # VisuaLUX Event Display More Options ### **VUV BUS** ### More On VUV Photons - Photon → PMT photocathode → single electron Except... - Xe scintillation: 175 nm (7.1 eV). Callibration LEDs: 470 nm (2.6 eV) - Two photo-electrons about 20% of the time in Xe - phe (photoelectrons) → phd (detected photons) 10 ### **Tritium BUS** ### **Spatial Uniformity** # Discriminator ER/NR Radial parametrization of the corrected Mercury radius vs. S2 size ### Radial comparison data vs. wall model below NR mean - •222Rn, 3.8 days, alpha decaying to... - •218 Po, 3.10 minutes, alpha decaying to... - •214 Pb, 26.8 minutes, beta decaying to... - •214Bi, 19.9 minutes, beta decaying to... - •214Po, 0.1643 ms, alpha decaying to... - •210Pb, which has a much longer half-life of 22.3 years, beta decaying to... - •210Bi, 5.013 days, beta decaying to... - •210Po, 138.376 days, alpha decaying to... - •206Pb, stable.