

Improved WIMP scattering limits from the LUX experiment

Wing To
LUX Collaboration
SLAC / Stanford University
TEXAS Symposium 2015
16 Dec 2015

SLAC

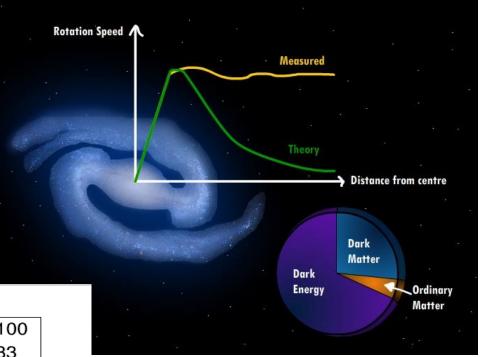
Outline

- Large Underground Xenon (LUX)
- First Run3 Analysis (90 live-days)
- Improved Analysis of Run3 Data arxiv:1512.03506
- Preparation for Run4 (300 live-days) Data

Improved WIMP scattering limits from the LUX experiment

D.S. Akerib, ^{1, 2, 3} H.M. Araújo, ⁴ X. Bai, ⁵ A.J. Bailey, ⁴ J. Balajthy, ⁶ P. Beltrame, ⁷ E.P. Bernard, ⁸ A. Bernstein, T.P. Biesiadzinski, 1,2,3 E.M. Boulton, A. Bradley, R. Bramante, 1,2,3 S.B. Cahn, 8 M.C. Carmona-Benitez, ¹⁰ C. Chan, ¹¹ J.J. Chapman, ¹¹ A.A. Chiller, ¹² C. Chiller, ¹² A. Currie, ⁴, * J.E. Cutter, ¹³ T.J.R. Davison, L. de Viveiros, A. Dobi, L. Y. Dobson, E. Druszkiewicz, B.N. Edwards, B. C.H. Faham, ¹⁵ S. Fiorucci, ¹¹ R.J. Gaitskell, ¹¹ V.M. Gehman, ¹⁵ C. Ghag, ¹⁶ K.R. Gibson, ¹ M.G.D. Gilchriese, ¹⁵ C.R. Hall, M. Hanhardt, 5, 18 S.J. Haselschwardt, 10 S.A. Hertel, 19, 8, 15 D.P. Hogan, 19 M. Horn, 19, 8, 15 D.Q. Huang, ¹¹ C.M. Ignarra, ^{2,3} M. Ihm, ^{19,15} R.G. Jacobsen, ^{19,15} W. Ji, ^{1,2,3} K. Kazkaz, ⁹ D. Khaitan, ¹⁷ R. Knoche, N.A. Larsen, C. Lee, 1, 2, 3 B.G. Lenardo, 13, 9 K.T. Lesko, 15 A. Lindote, 14 M.I. Lopes, 14 D.C. Malling, ¹¹ A. Manalaysay, ¹³ R.L. Mannino, ²⁰ M.F. Marzioni, ⁷ D.N. McKinsey, ^{19,8,15} D.-M. Mei, ¹² J. Mock, ²¹ M. Moongweluwan, ¹⁷ J.A. Morad, ¹³ A.St.J. Murphy, ⁷ C. Nehrkorn, ¹⁰ H.N. Nelson, ¹⁰ F. Neves, ¹⁴ K. O'Sullivan, ^{15, 19, 8} K.C. Oliver-Mallory, ^{19, 15} R.A. Ott, ¹³ K.J. Palladino, ^{22, 2, 3} M. Pangilinan, ¹¹ E.K. Pease, ^{19, 8, 15} P. Phelps, L. Reichhart, C. Rhyne, S. Shaw, T.A. Shutt, 2,3 C. Silva, V.N. Solovov, P. Sorensen, 5 S. Stephenson, ¹³ T.J. Sumner, ⁴ M. Szydagis, ²¹ D.J. Taylor, ¹⁸ W. Taylor, ¹¹ B.P. Tennyson, ⁸ P.A. Terman, ²⁰ D.R. Tiedt, W.H. To, 1, 2, 3 M. Tripathi, 13 L. Tvrznikova, 19, 8, 15 S. Uvarov, 13 J.R. Verbus, 11 R.C. Webb, 20 J.T. White,²⁰ T.J. Whitis,^{1,2,3} M.S. Witherell,¹⁰ F.L.H. Wolfs,¹⁷ K. Yazdani,⁴ S.K. Young,²¹ and C. Zhang¹² (LUX Collaboration)

Dark Matter Detection


Our Universe

- 4.9% Visible Matter
- 26.8% Dark Matter
- 68.3% Dark Energy

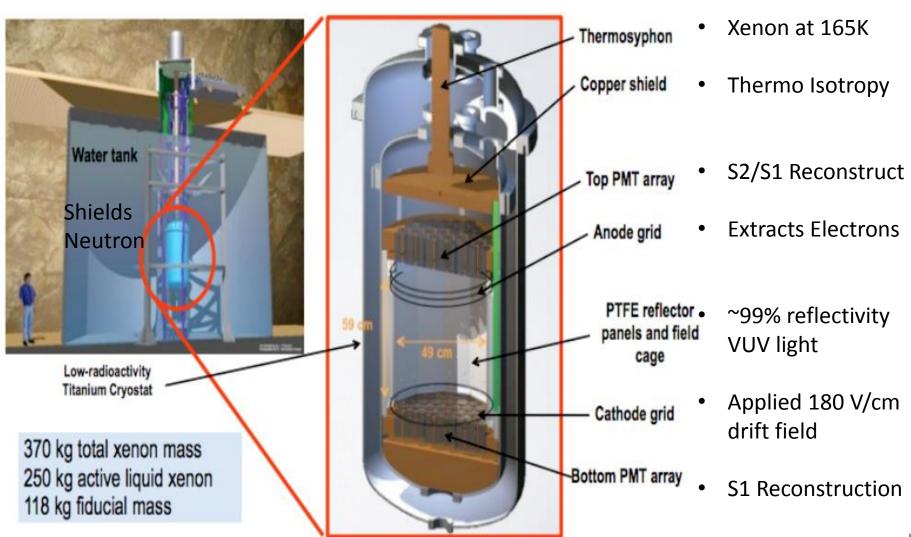
Weakly Interacting Massive Particles

- Weak! Interaction cross-section $\sigma < 10^{-45} \text{cm}^2$ @ 33 GeV mass
- Massive ~ 100 GeV range

WIMP – Xenon interaction

- WIMPs scatters off normal matter and imparts small amount of energy
- Excited atom releases this energy
 - Heat (Loss)
 - Scintillation Light (S1)
 - Ionization (S2)

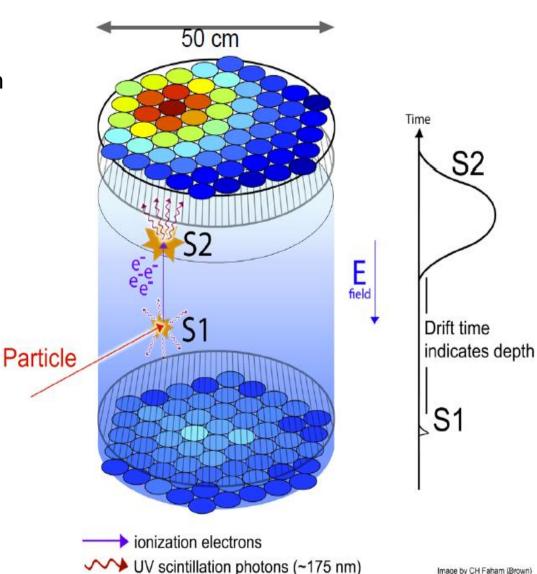
LUX Collaboration



LUX Detector

Located 4850 ft (1.5km) underground in the Davis Cavern in Lead South Dakota

LUX Detector

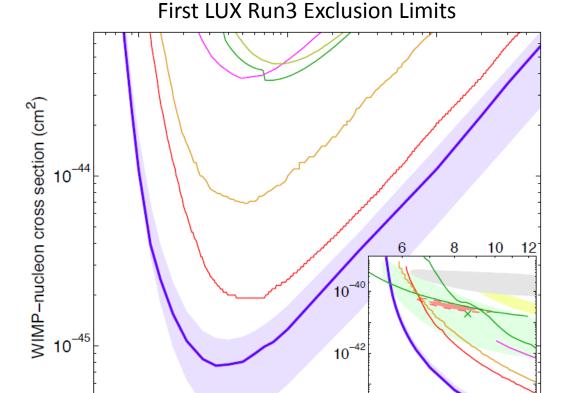


Dual Phase Xenon TPC

- Particle interacts with the Xenon and deposites ~ keV of Energy
- Prompt Scintillation Light (S1)
- Delay & Localized Charge on the top PMT array (S2)
- Drift time of the electrons

$$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$

- W = 13.7 eV
- g1 = Light Collection
- g2 = Extraction Eff, Light
- L(E) = Lindhard Factor
 Fraction of Energy Loss to Heat



Notes Original Analysis

Original Run3 Analysis

- Exclusion down ~ 6 GeV
- Energy threshold: 3 keV (slide2)
- 85.3 Live-days with 118 kg of fiducial mass (10k kg-days)
- $2 \le S1 \le 30 \text{ Phe}$
- S2 > 200 Phe
- Event Radius < 18 cm
- 160 Events observed in data after selection cuts

10²

m_{WIMP} (GeV/c²)

• LUX

10¹

- Xenon100 (225 days)
- Xenon100 (100 days)
- Edelweiss II

10³

ZEPLIN III

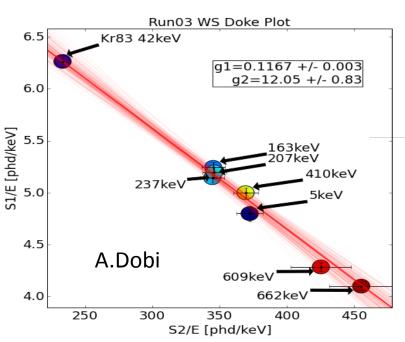
10-44

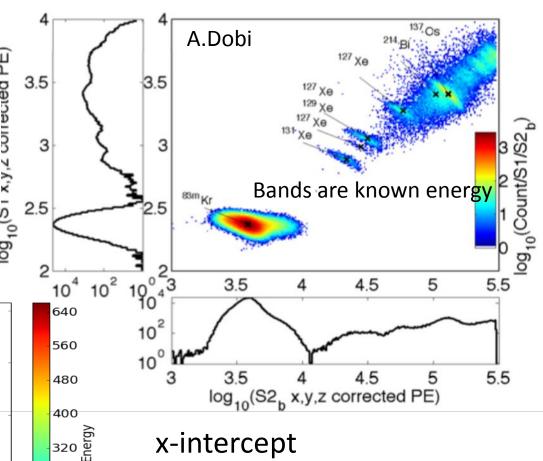
CDMS II

Reanalysis: The List

PMT Pulses

- Vacuum UV correction between liquid and gas (A.Currie)
- Spike Counting for S1 Improved Pulse classification (S.Shaw)
- Fixed biases in pulse area measurements (T. Biesiadzinski, S. Shaw)
- Improved XY position Reconstruction (C.Silva)
- S2 energy from both Top and Bottom Array (C.Silva)
- Energy Calibration for Electronic Recoil Events (A.Dobi)
- Inclusion of low energy Nuclear Recoil Events (J.Verbus)
- Improve background models (B.Tennyson, C.Lee)
- Improved signal model full Energy -> S1 / S2 simulation (W.To)
- Created a new sensitivity and limits framework using Profile Likelihood Ratio (W.To)


Data-Driven Energy Calibration



$$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$

$$S2/E = \frac{n_e}{(n_e + n_\gamma)} \cdot \frac{g_2}{W}$$
 and

$$S1/E = \frac{n_{\gamma}}{(n_e + n_{\gamma})} \cdot \frac{g_1}{W},$$

x-intercept

240

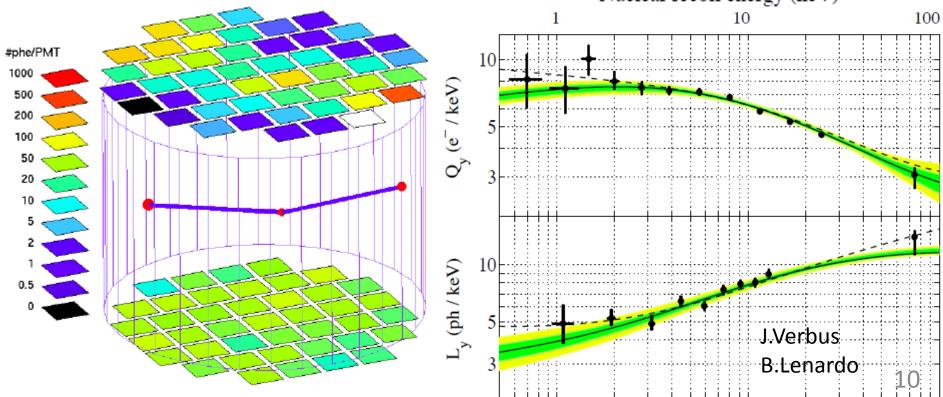
160

80

• $n_v \to 0$; S2/E = g2/W

Y-intercept

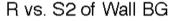
 $n_{p} \rightarrow 0$; S1/E = g1/W

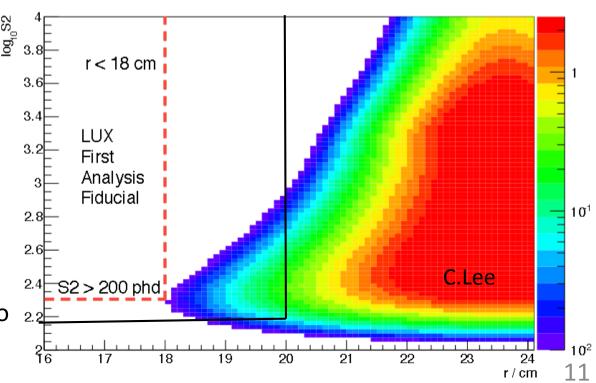

Neutron DD Calibration

- Mono-energetic: 2.45 MeV fired into LUX
- Two line segments so the energy of the middle scatter is known

- Qy = Charge Yield (S2 Size/E)
- Ly = Light Yield (S1 Count /E)
- Fit to Lindhard/Berzukov model to get L(E)

$$E = \frac{1}{\mathcal{L}(E)} \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right) \cdot W.$$
Nuclear recoil energy (keV)

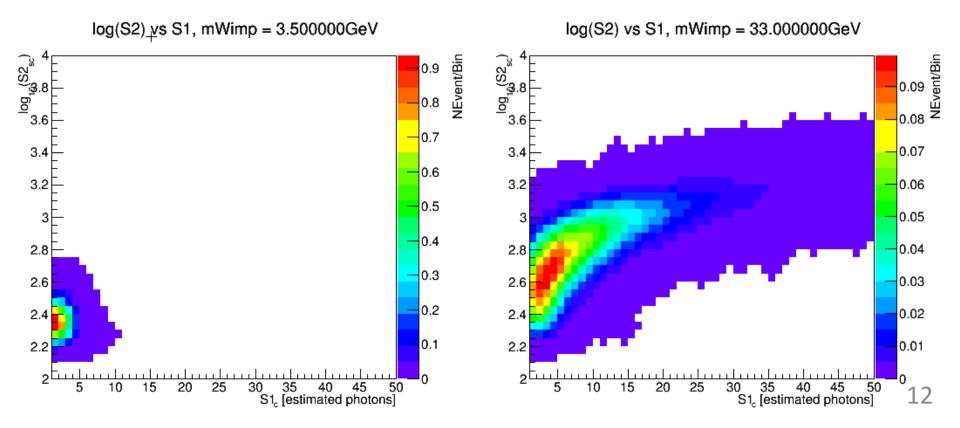

Background Model



- Detector Material: Gamma rays from Co-60, K-40, Tl-208, Bi-214
 - Global Fit to 3 MeV
 - Asymmetric source from top and bottom
- Internal Background (in Xenon): Ar-37, Kr-85m, Xe-127

Wall Background:

- Rn222-Pb206
- Occurs on the wall at 24.2-5 cm
- Resolution Leaks into below 18 cm
- Charge Loss
- Inclusion of Wall Bkg increase Fidicial Radius to 20 cm



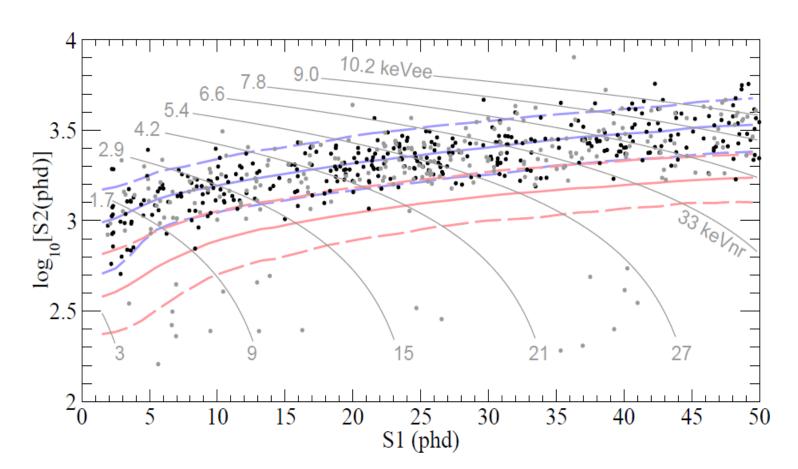
Signal Model and Limits

- First Result used S1 as a proxy for Energy { E(S1) = 6th Degree Poly }
- Noble Element Simulation Technique, M.Sydagzis et al, arxiv:1106.1613
- Implement full NEST simulation in the sensitivity calculation
- NEST parameter are derived from DD-data
- All parameters including g1, g2 and L(E) are allow to vary in fits

SLAC

Sensitivity Exclusion Calc

- Limits calculation switched to physical quantity of cross-section instead of number of events
- Signal Model is generated on the fly
 - Parameters can be varied during fits
 - Profile over parameter space
- Nuisance Parameters
 - Both Signal Strength and Shape could be changed by the NPs
 - The kappa factor in L(E) is found to be dominated in Signal Strength
 - g2 is found to dominated in Signal Shape.
 - kappa is allowed to for all mass points
 - g2 only floats above 4 GeV (huge increase in computing time)
 - Each individual background contribution also have a NP
 - The likelihood ratio is calculated with all NPs variation so we get a profile of the model parameters (PLR)
- "Goodness-Of-Fit" between Data and Background Model


Re-Analysis Dataset

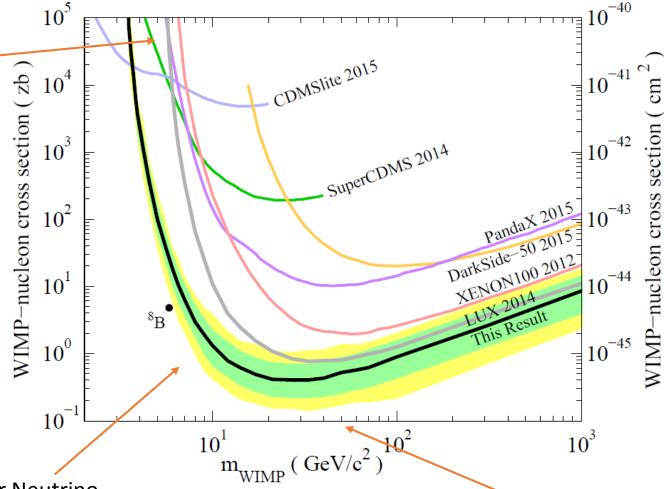
• $1 \le S1 \le 50 \text{ Phd}$

S2 > 150 Phd

- Energy Threshold = 1.1 keV
- 10 additional days from dataset with tiny amount of Kr-83 from calibration
- 95 Live-days x 145 kg = 13800 kg-days (increase of 40%)
- Total of 591 events

Maximum Likelihood Fit

- 95 Live days * 145 kg of Exposure
- Observed 591 Events
- Background Model Predicted: 589 Events
- Signal Model of various masses are included into the fit with Lindhard k and g2 allowed to float
- cross-section for all masses fit to < 1e-4 zb


Parameter	Constraint	Fit value
Lindhard k	0.174 ± 0.006	
S2 gain ratio: $g_{2,\text{dd}}/g_{2,\text{ws}}$	0.94 ± 0.04	-
Low-z-origin γ counts: $\mu_{\gamma, \text{bottom}}$	172 ± 74	165 ± 16
Other γ counts: $\mu_{\gamma, rest}$	247 ± 106	228 ± 19
β counts: μ_{β}	55 ± 22	84 ± 15
127 Xe counts: $\mu_{\mathrm{Xe-127}}$	91 ± 27	78 ± 12
37 Ar counts: $\mu_{\text{Ar-}37}$	-	12 ± 8
Wall counts: μ_{wall}	24 ± 7	22 ± 4

New Exclusion Limits

Improved Low Mass Threshold lowered to 1.1keV

Boron-8 Solar Neutrino. Currently contributes to 0.1 Evt to our Bkg

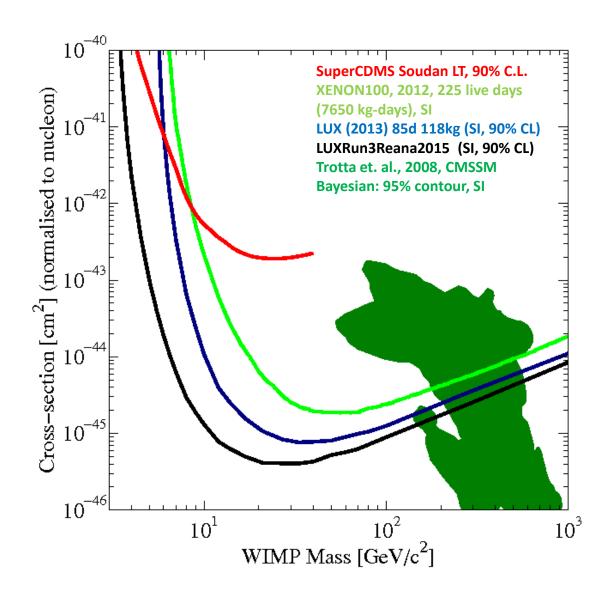
 $33~GeV~\sigma=4~x~10^{-46}~cm^2$ Increased exposure of 40% and better background / signal models

LUX Run4 Data

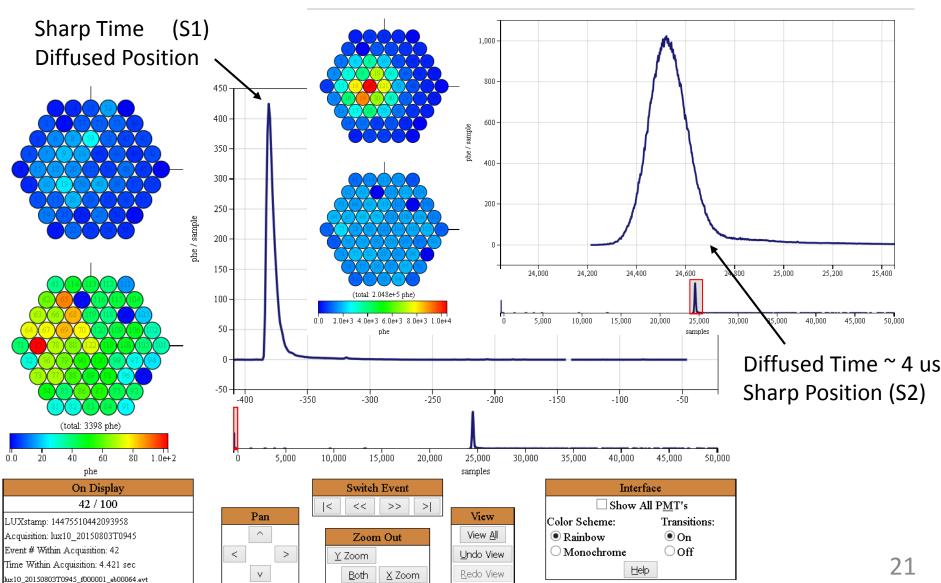
- LUX is currently taking data until the end of 2016
- Additional 300+ live-days of data
- Increase exposure by a factor of 4
- Preliminary estimate approximately factor of 2 improvement in WIMP sensitivity
- Improved Modeling of the E-field in LUX
- Better background models with full 3D information (φ)
- Improve treatments of nuisance parameters in order to allow variation at low masses
 - Large number of events needs to be generated currently
 - Avoid this by parameterizing s1 and s2

Conclusion

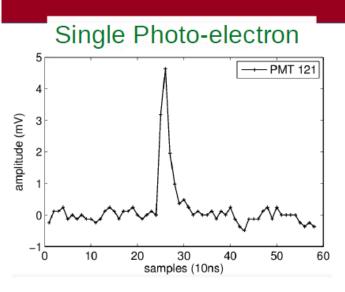
- Reanalysis of LUX first 90 live-days of data improved the sensitivity by factor of 2 at 33 GeV
- Pushed lowest mass limits from 6 GeV to 3.4 GeV
- Improvement s from PMT Pulses to Final Limits calculation were implemented
- Additional calibration sources allowed us to use data drive methods for background and signal modeling
- Work is meant to be carried over to 300+90 live-days of data being collected until end of 2016
- PRD with analysis detail coming soon.
- SD and Axion limits are also coming out

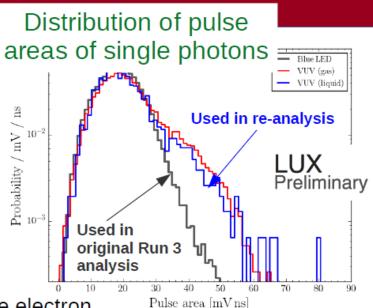

Back Up Slides (BUS)

Exclusion of CMSSM



VisuaLUX Event Display

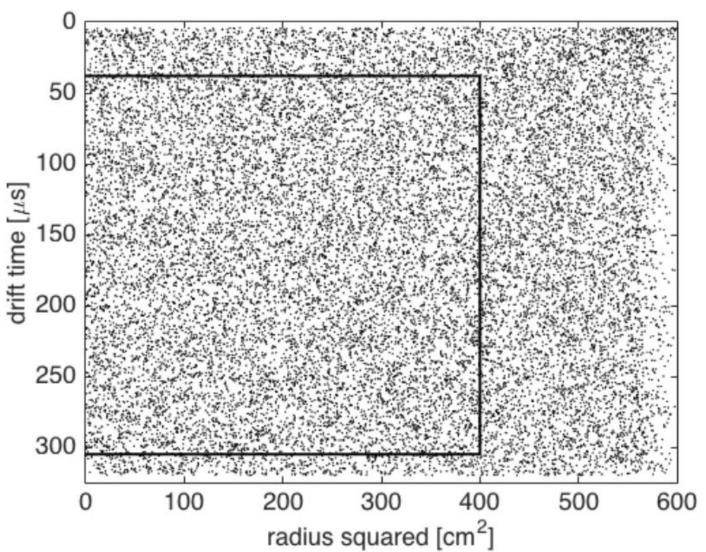

More Options



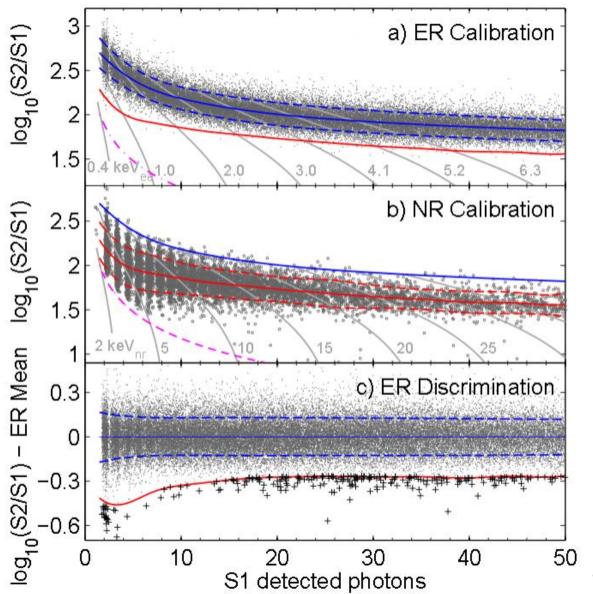
VUV BUS

More On VUV Photons

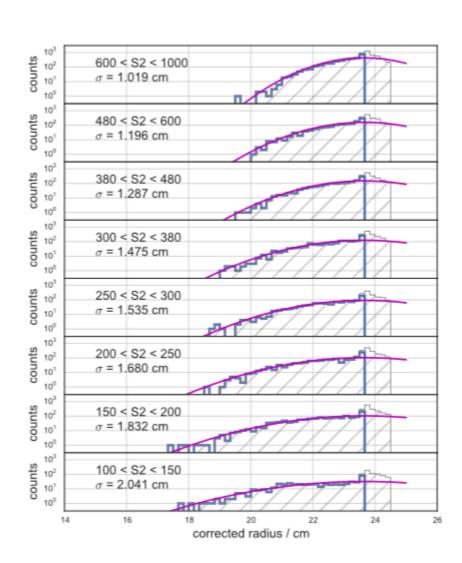
- Photon → PMT photocathode → single electron Except...
 - Xe scintillation: 175 nm (7.1 eV). Callibration LEDs: 470 nm (2.6 eV)
- Two photo-electrons about 20% of the time in Xe
 - phe (photoelectrons) → phd (detected photons)

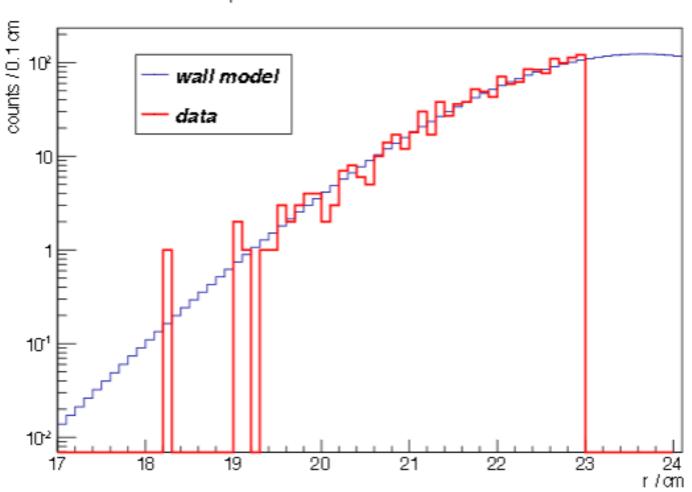

10

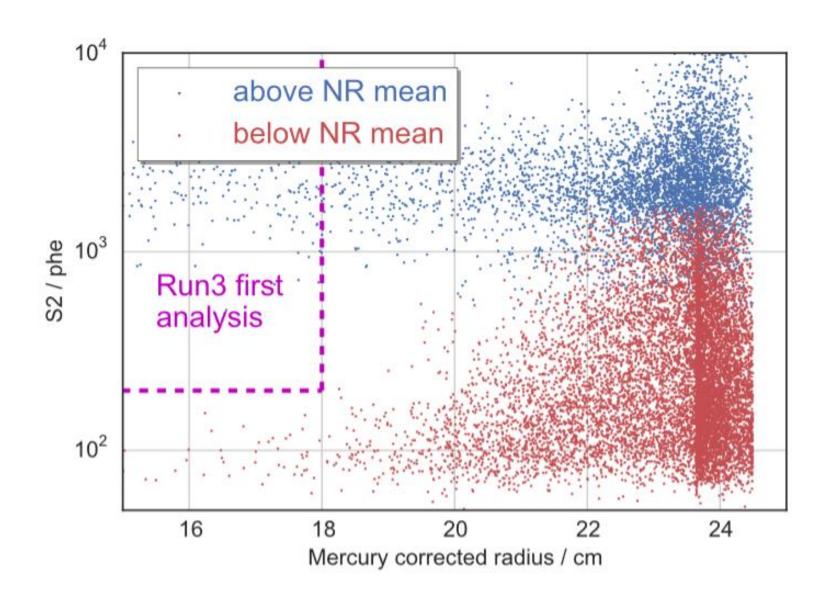
Tritium BUS


Spatial Uniformity

Discriminator ER/NR




 Radial parametrization of the corrected Mercury radius vs. S2 size



Radial comparison data vs. wall model below NR mean

- •222Rn, 3.8 days, alpha decaying to...
- •218 Po, 3.10 minutes, alpha decaying to...
- •214 Pb, 26.8 minutes, beta decaying to...
- •214Bi, 19.9 minutes, beta decaying to...
- •214Po, 0.1643 ms, alpha decaying to...
- •210Pb, which has a much longer half-life of 22.3 years, beta decaying to...
- •210Bi, 5.013 days, beta decaying to...
- •210Po, 138.376 days, alpha decaying to...
- •206Pb, stable.