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Outline
Introduction

(concordance cosmology, perturbation theory)
Discrete picture of (scalar and vector) cosmological 
perturbations (at all sub- and super-horizon scales)

(weak gravitational field limit, point-like masses)
Menu of properties, benefits, and bonuses

- Minkowski background limit
- Newtonian approximation and homogeneity scale
- Yukawa interaction and zero average values
- Nonzero spatial curvature and screening of gravity

Conclusion + fun
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Introduction
Concordance cosmology:  Λ C(old) D(ark) M(atter) model

~ 69% (Λ)

~ 26% (CDM)

~   5% (SM)

acceleration of global expansion

Universe

(baryons, photons)

Planck 2015 results. XIII. Cosmological 
parameters       arXiv:1502.01589v2
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Cosmological principle

on large enough scales the
Universe is treated as being
homogeneousand isotropic

F(riedmann)-L(emaître)-
R(obertson)-W(alker) 
background metric

on sufficiently small
scales the Universe is
highly inhomogeneous

observed separate galaxies, 
their groups and clusters 

perturbation theory
structure formation from 
primordial fluctuations at 

earliest evolution stages 
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Two main distinct approaches
to structure growth investigation

relativistic 
perturbation

theory 

N-body simulations
generally based onNewtonian 
cosmological approximation 

early Universe;
linearity; large scales

late Universe;
nonlinearity; small scales

Keywords

fails in describing 
nonlinear dynamics 
at small distances

do not take into account 
relativistic effects becoming 

non-negligible at large distances
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The acute problem:construction of a self-consistent
unified scheme, which would be validfor arbitrary
(sub- & super-horizon) scalesand incorporate linear
& nonlinear effects.

very promising in precision cosmology era

Deviations of the metric coefficients from their 
background (average) values are considered as 1st

order quantities, while the 2nd order is completely 
disregarded. 

Weak gravitational field limit
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A couple of previous attempts
to develop a unified perturbation theory

I. Generalization of nonrelativistic post-Minkowski
formalism to the cosmological case in the form of
relativistic post-Friedmann formalism, which would
be valid on all scales and includethe full nonlinearity
of Newtonian gravity at small distances:

expansion of the metric in powers of the
parameter 1/c (the inverse speed of light)

I. Milillo, D. Bertacca, M. Bruni and A. Maselli, Phys. Rev. D 
92, 023519 (2015) arXiv:1502.02985v2
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different orders of smallness given
to the metric corrections and their
spatial derivatives (“dictionary”)

II. Formalism for relativistic N-body simulations: 

J. Adamek, D. Daverio, R. Durrer and M. Kunz,
Phys. Rev. D 88, 103527 (2013);                  arXiv:1308.6524v2

S.R. Green and R.M. Wald, Phys. Rev. D 85, 063512 (2012);
arXiv:1111.2997v2

presenting nonrelativistic 
matter as separate point-
like massive particles

Discrete cosmology:
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1) no any supplementary approximations or extra 
assumptions in addition to the weak field limit;

2) spatial and temporal derivatives are treated
on an equal footing, no “dictionaries”;

3) no expansion into series with respect
to the ratio 1/c; 

4) no artificial mixing of first- and second-order 
contributions to the metric;

5) sub- or super-horizon regions are not singled out

Advantages of the unified scheme developed here

LET’S 
GO !!!
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Discrete picture of (scalar and vector) 
cosmological perturbations

Unperturbed FLRW metric describing (homogeneous 
and isotropic on the average) Universe:

( )2 2 2ds a d dx dxα β
αβη δ= − , 1,2,3α β =

scale 
factor

conformal time

comoving 
coordinates

spatial curvature is
zero (generalization
to non-flat spatial
geometry is simple)
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Friedmann Eqs. in the framework of the pure ΛCDM 
model (with a negligible radiation contribution):

2

2

3H

a
κε= + Λ

ɶ 2

2

2H H

a

′ + = Λ
ɶ ɶ

energy density of 
nonrelativistic 
pressureless matter

cosmological 
constant

overline: average value ;
prime:    derivative with

respect to

a
H

a

′
≡ɶ

η

48 NG cκ π≡

Newtonian
gravitational constant
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( ) ( )2 2 21 2 2 1 2ds a d B dx d dx dxα α β
α αβη η δ = + Φ + − − Φ 

0
B

x
αβ α

βδ ∂∇ = =
∂

B
tensor perturbations are 
not taken into account

function               and spatial vector :
scalar and vector perturbations, respectively

k k k
i i iG Tκ δ= + Λ

Perturbed metric describing (inhomogeneous and 
anisotropic) Universe:

( ),ηΦ r ( ) ( )1 2 3, , ,B B Bη ≡B r

Einstein Eqs.: , 0,1,2,3i k =

mixed components of Einstein and
matter energy-momentum tensors
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( )0 0 2 0
0 0 0

1
3

2
G T H H a Tκ κ δ′= + Λ ⇒ ∆Φ − Φ + Φ =ɶ ɶ

( )0 0 2 01 1

4 2
G T B H a T

xα α α αακ κ δ∂ ′= ⇒ ∆ + Φ + Φ =
∂

ɶ

( )23 2 0G T H H Hβ β β
α α ακ δ ′′ ′ ′= + Λ ⇒ Φ + Φ + + Φ =ɶ ɶ ɶ

2 0
B BB B

H
x x x x

β βα α
β α β α

′∂ ∂   ∂ ∂+ + + =   ∂ ∂ ∂ ∂   
ɶ

2

x x
αβ

α βδ ∂∆ ≡
∂ ∂

Laplace operator in 
comoving coordinates

k k k
i i iT T Tδ= + 0

0T ε=

only nonzero average 
mixed component
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( )
2 i k

ik n n n
n

n n

m c dx dx d
T

d d dsg

η δ
η η

= −
−∑ r r

in the spirit of the particle-
particle method of N-body 
simulations

gravitating masses

comoving 
radius-vectors

( )det ikg g≡

4-velocities
i i
n n nu dx ds≡

comoving 
peculiar 
velocities

n nv dx dα α η≡ɶ

( )n n n
n n

mρ δ ρ= − =∑ ∑r r ( )n n nmρ δ≡ −r r

rest mass density
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import the 1st order of smallness 
in rhs of linearized Einstein Eqs.

nvα
ɶ

2 2
0 0 0

0 0 0 3 3

3c c
T T T

a a

ρδ δρ≡ − = + Φ

( )
2 2 2 2

0
3 3 3 3n n n n n

n n

c c c c
T m v B v B

a a a a
α α

α α α
ρ ρδ δ ρ= − − + = − +∑ ∑r r ɶ ɶ

δρ ρ ρ≡ −

0T β
αδ = replacements:

,ρ ρ ρ ρΦ → Φ →B B

( )
2 23

3
2 2

c c
H H

a a

κρ κ δρ′∆Φ − Φ + Φ − Φ =ɶ ɶ

( ) ( )
2 2 21

4 2 2 2n n n n n
n n

c c c
H m

a a a

κρ κ κδ ρ′∆ + ∇ Φ + Φ − = − − = −∑ ∑B B r r v vɶ ɶ ɶ

1st order
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( ) ( )1 2 3, ,n n n n nd d v v vη η≡ ≡v rɶ ɶ ɶ ɶ

( ) 0n n nρ ρ′ + ∇ =vɶContinuity Eq.:

n n n n
n n

ρ ρ = ∇Ξ + − ∇Ξ 
 

∑ ∑v vɶ ɶ

grad        curl

( )
3

1

4
n n

n
n n

m
π

−
Ξ =

−
∑

r r v

r r

ɶ

( ) ( ) ( ) ( ) ( )2
ˆ , , exp expn n n

n

i
i d m i

k
η ηΞ ≡ Ξ − = − −∑∫k r kr r kv krɶ

( ) ( ) ( ) ( ) ( ) ( )ˆ , , exp exp expn n n n n ni d m i d m iρ η ρ η δ≡ − = − − = −∫ ∫k r kr r r r kr r kr

k ≡ k

Fourier transform:

2

2

c
H

a

κ′Φ + Φ = − Ξɶ
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2 21

4 2 2 n n
n

c c

a a

κρ κ ρ ∆ − = − − ∇Ξ 
 
∑B B vɶ

2 2 2

ˆ ˆ ˆˆ
4 2 2 n n

n

k c c
i

a a

κρ κ ρ − − = − − Ξ 
 
∑B B v kɶ

( ) ( )12 2
2

2

2 2ˆ exp n
n n n

n

c c
k m i

a a k

κ κρ
−

  
= + − −  

   
∑

kv
B kr v k

ɶ
ɶ

( ) ( )

( ) ( ) ( ) ( )

22

2

2

3 2

3 2 3 4 exp 2 3 3

8

9 9 6 3 4 exp 2 3
   

n n nn n

n n n

n n nn n n
n

nn

q q qmc

a q

q q qm

q

κ
π

 + + − −
= ⋅
 −


− + + −−   + − ⋅
−


∑
v

B
r r

v r r
r r

r r

ɶ

ɶ
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( ) ( )
23

,
2n n

c

a

κρη ≡ −q r r r n nq ≡ q

2 2 23 3

2 2 2

c c c H

a a a

κρ κ κδρ∆Φ − Φ = − Ξ
ɶ

( ) ( )
2 2 2 2

32 3 3ˆ ˆ ˆˆ 2
2 2 2 2n

n

c c c c H
k

a a a a

κρ κ κρ κρ π δ− Φ − Φ = − − Ξ∑ k
ɶ

( ) ( ) ( ) ( )
12 2

32
2

3ˆ exp 1 3 2
2 2

n
n n

n

c c
k m i iH

a a k

κ κρ ρ π δ
−
   

Φ = − + − + −   
     
∑

kv
kr k

ɶ
ɶ

( )

( ) ( ) ( )

2

2

2

1
exp

3 8

1 1 exp3
   

8

n
n

n n

n n n n n

n n n

mc
q

a

m q qc
H

a q

κ
π

κ
π

Φ = − −
−

−  − + − + ⋅
−

∑

∑

r r

v r r

r r

ɶ
ɶ
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Thus, explicit expressions for 1st order vector and
scalar cosmological perturbations are determined.

satisfied

???

???

satisfied

???

ˆ ˆ2 0H′ + =B Bɶ ???

ˆ0 0∇ = → =B kBIncidentally, satisfied
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Equations of motion

( ) 1 2
1 2 2 1 2n n n nds a B v v v dα α β

α αβδ η = + Φ + − − Φ ɶ ɶ ɶ

( )
n n

na a
= =

′ − = ∇ Φ
 r r r r

B vɶ

( ) ( )n n
n

a a aρ ρ ρ′ ′− = ∇Φ∑B vɶ ( ) ( )n n
n

a a aρ ρ ρ′ ′= − ∇Φ +∑ v Bɶ

( ) ( )( ) ( )ˆˆˆ expn n n n n
n n

a m i a a i aρ ρ ρ ′′ ′= − = − ⋅ Φ +∑ ∑v kr v k Bɶ ɶ

Spacetime interval for the n-th particle

???all            satisfied

n
n

ρ ∑

( ) ( )
n n

na a H
= =

′ = − ∇ Φ +
r r r r

v Bɶɶ
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Menu of properties, benefits,
and bonuses

Minkowski background limit
const 0a H→ ⇒ →ɶ 0 0nqρ → ⇒ →

2

28
n N n

n nn n

m G mc

a c

κ
π

Φ → − = −
− −∑ ∑r r R R

The constant 1/3has been dropped 
since it originates exclusively from 
the terms containing .

physical 
radius-
vectors

n n

a

a

=
=

R r

R r

ρ
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( ) ( )

( )

2

3

2

4

4
4

2

n n nn n
n

n n n

n nN n n
n

n n n n

mmc

a

G m

c

κ
π

 −  → + − 
− −  

 −  − = + 
− − −  

∑

∑

v r rv
B r r

r r r r

v R R R R
v

R R R R R R

ɶɶ

ɶ
ɶ

,n n
n n

d d

d dtη
≡ ≡r r

v vɶ

n
n

a
cdt ad

c
η= ⇒ = v

vɶ

synchronous time 

The sum of these integers
4 + 4 = 8

is the same for the other 
appropriate choices of 
gauge conditions as well.

complete agreement with textbooks
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Newtonian approximation
Homogeneity scale

(peculiar motion as a gravitational field 
source is completely ignored)

0

 1
n

nq

→vɶ

≪

2
N n

n n

G m

c
Φ → −

−∑ R R

The constant1/3 has been dropped for the other
reason: only the gravitational potential gradient
enters into Eqs. of motion describing dynamics
of the considered system of gravitating masses.

0→B



Geneva, Switzerland          December 14, 2015          arXiv:1509.03835v1 24

( )
3

n j n

j j N
n j

j n

ma
G

a ≠

−
− = −

−
∑

R R
R R

R R

ɺɺ
ɺɺ

complete agreement with Eqs. for N-body simulations

33 2

2 2
0 0

2 2

3 9 M

a c a

c H a
λ

κρ
 

≡ =  Ω  

4

2 3
0 03M

c

H a

κρΩ ≡

What are the applicability 
bounds for the inequality?

 1n nq λ⇔ −R R≪ ≪

dot: derivative 
with respect to t

current 
values

a cH
H

a a
≡ =

ɶɺ

Hubble 
parameter

0 68 km/s/Mpc

0.31

 

M

H ≈
Ω ≈
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0 3700 Mpc 3.7 Gpc 12 Glyλ ≈ = ≈today

This Yukawa interaction range and dimensions of the
known largest cosmic structuresare of the same order !

Hercules-Corona Borealis Great Wall ~  2-3 Gpc
I. Horvath, J. Hakkila and Z. Bagoly, A&A 561, L12 (2014); arXiv:1401.0533

Giant Gamma Ray Burst Ring ~  1.7 Gpc
L.G. Balazs, Z. Bagoly, J.E. Hakkila, I. Horvath, J. Kobori, I. Racz, L.V. Toth, 
Mon. Not. R. Astron. Soc. 452, 2236 (2015); arXiv:1507.00675

Huge Large Quasar Group ~  1.2 Gpc
R.G. Clowes, K.A. Harris, S. Raghunathan, L.E. Campusano, I.K. Soechting, 
M.J. Graham, Mon. Not. R. Astron. Soc. 429, 2910 (2013); arXiv:1211.6256
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obvious hint at a resolution opportunity:
to associate the scale of homogeneity with
λ (~ 3.7 Gpc today) instead of~ 370 Mpc

Formidable challenge:dimensions of the largest cosmic
structures essentially exceedthe scale of homogeneity
∼∼∼∼ 370 Mpc.

J.K. Yadav, J.S. Bagla and N. Khandai, Mon. Not. Roy. 
Astron. Soc. 405, 2009 (2010); arXiv:1001.0617v2

Cosmological principle(Universe is homogeneous and
isotropic when viewed at a sufficiently large scale) is
saved and reinstated when this typical averaging scale
is greater than λ.

3 2aλ ∼

  a λ↓ ⇒ ↓
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What are the applicability bounds
for peculiar motion ignoring?

( )2

2

3 1
8 2

~ ???

8

n n n

n

n

n

mc
H

a

mc

a

κ
π

κ
π

−  ⋅ ⋅
−

− ⋅
−

v r r

r r

r r

ɶ
ɶ

2

1 1
1

12 2
1

3 1
3 38 2
2 2

8

c
H m v Hav Ra Hv r

mc с

a r

κ
π

κ
π

⋅ ⋅
= =

⋅

ɶ ɶ

ɶ ɶ

ratio of velocity 
-dependent and 
-independent 
terms in Φ

For a single gravitating mass momentarily located at
the origin of coordinates with the velocity collinear to :

1m

r

1 1 1

1 1

v cv a

R ar

q

≡ =

≡ =

v

R

ɶ

≪
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( ) ( )2 3
13 2 1 2 10H av R с

−⋅ ⋅ ÷ ×≪

absolute value of the particle’s 
physical peculiar velocity ( )~ 250 500 km s÷

same estimate for a
ratio of derivatives

( )
2

2 2 2

1 3 3
1

H H
q

c cλ
= + = −

ɺ

( )
1

3 1

c

Hq
λ =

+

c Hλ ≠

Hubble 
radius deceleration parameter

if ( )2 2 3q a aH≡ − ≠ −ɺɺ

0 1.16a a ≠ (future)
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Yukawa interaction
Zero average values

1
    velocity-dependent part

3 n
n

φΦ = + +∑

( )
2

2
exp exp

8
nn N n

n n
n n

m G mc
q

a c

κφ
π λ

 − 
= − − = − − − −  

R R

r r R R

manifestation of the superposition principle

Yukawa potentials coming from each single 
particle, with the same interaction radius  λ
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not well-defined, depends on the order of adding terms; 
addition in the order of increasing distances and 
a spatially homogeneous and isotropic random process 
with the correlation length for the distribution 
of particles are required for convergence of such a sum

d
ρ ρ′=

−
′Φ

′−∫ r rr
r r

∼

( )3d
ρ ′=′ ′−∇Φ −

′−∫ r rr r r
r r

∼ ( )3
n

n
n n

m−∇Φ −
−

∑ r r
r r

∼

Computation of a sum in Newtonian approximation
P.J.E. Peebles, The large-scale structure of the Universe,
Princeton University Press, Princeton (1980).

(8.1)

(8.3) (8.5)

n−r r

c H≪
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n
n

φ∑

no obstacles in the
way of computation,
the order of adding
terms corresponding
to different particles
is arbitrary and does
not depend on their
locations

Summing up the Yukawa potentials

convergentin all points
except the positions of
the gravitating masses

no famous Neumann-
Seeliger gravitational 
paradox

particles’ distribution may be nonrandom
and anisotropic (e.g.,the lattice Universe)
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2 2 2

2

1 4 1
exp

8 8 3
nn n n

n n
nV V

am m mc d c
d

V a V a V a V

κ κ πλφ φ
π λ π ρ

 − 
≡ = − − = − = − −  
∫ ∫

r rr
r

r r

1 1 1

3 3n n
n n

m
V

φ
ρ

= − ⋅ = −∑ ∑

1
velocity-dependent part 0

3 n
n

φΦ = + + =∑

comoving averaging volume, tending to infinity

1
n

n

m
V

ρ≡∑

1 3− 0 0=B

no first-order backreaction effects

0
0

0

0

0

T

T α

δ

δ

=

=
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In addition, in the limiting case of the homogeneous 
mass distribution            at any point. For example, 
on the surface of a sphere of the physical radius R
the contributions from its inner and outer regions 
combined with 1/3 give0.

0Φ =

R

Then Eq. of motion of a 
test cosmic body reads:

a

a
=R R
ɺɺ

ɺɺ

(    is reasonably connected 
with the acceleration of the 
global Universe expansion)

Rɺɺ
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Nonzero spatial curvature
Screening of gravity

2 23
3

2 2

c c
K

a a

κρ κ δρ 
∆Φ + − Φ = 

 

velocities’ 
contributions 

dropped

+ 1  for the spherical (closed) space
– 1  for the hyperbolic (open) space

Solutions aresmooth at any point except particles’
positions (whereNewtonian limits are reached) and
characterized byzero average valuesas before.
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not only for the curved space,
but also in the presence of

an arbitrary number
of additional Universe components

in the form of barotropic perfect fluids

( )
1

3 1

c

Hq
λ =

+

at the radiation-dominated stage 
of the Universe evolution

Sinceλmay be associated with the homogeneity 
scale, asymptotic behaviour when
supports the idea of the homogeneous Big Bang.

2~ aλ

0λ → 0a →
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irresistible temptation of associating the Yukawa 
interaction range  λ with  the graviton Compton 
wavelength ( )gh m c

Planck
constant

graviton
mass

( )gm cλ = ℏ

( )2h π≡ℏ

( ) 331.7 10 eVgm cλ −= ≈ ×ℏ

(today)
2 2

2 2

1 2

3
gm c

λ
Λ= =

ℏ

9 4M ΛΩ = Ω
2

2
03

с

HΛ
ΛΩ ≡ 1M ΛΩ + Ω =

4 13 0.31,   9 13 0.69M ΛΩ = ≈ Ω = ≈
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Conclusion

I

first-order scalar and vector
cosmological  perturbations,
produced by inhomogeneities in the discrete form
of a system of separate point-like gravitating masses, 
are derived without any extra approximations
in addition to the weak gravitational field limit
(no      series expansion, no “dictionaries”);1c−
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II

obtained metric corrections are valid at all (sub-
horizon and super-horizon) scales and converge
in all points except locations of sources 
(where Newtonian limits are reached),
and their average values are zero
(no first-order backreaction effects);

III

the Minkowski background limit and Newtonian 
cosmological approximation are particular cases;
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IV

the velocity-independent part of  the scalar perturbation 
contains a sum of Yukawa potentials with the same finite 
time-dependent Yukawa  interaction  range,  which may 
be connected with the scale of homogeneity, thereby 
explaining existence of the largest cosmic structures;

V

the general Yukawa range definition is given for various 
extensions of the concordance model (nonzero spatial 
curvature, additional perfect fluids).
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λ

dark energy
coincidence 

graviton
cosmological

constant

information 
holography

entropy

Big Bang
inflation
quantum
gravity

microwave
background

cosmic variance
Multiverse

Let’s proceed
together?



What is the max. 
depth of Lake 

Geneva?

A.      310  m B. 21 cm

C.   0.7 AU D.   3.7 Gpc
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FUN



Whose law is the most appropriate for 
description of universal gravitation???

A.   Newton B.    Einstein

C.   Yukawa D.  Coulomb
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THANK  YOU  FOR  ATTENTION !

https://www.flickr.com/photos/jinterwas https://creativecommons.org/licenses/by/2.0/


