28th Texas Symposium on Relativistic Astrophysics A New Connection Between Plasma Conditions Near Black Hole Event Horizons and Outflow Properties

Karri Koljonen New York University Abu Dhabi

+ Dave Russell, Juan Fernandez-Ontiveros, Sera Markoff, Thomas Russell, James Miller-Jones, Alexander van der Horst, Federico Bernardini, Piergiorgio Casella, Peter Curran, Roberto Soria, Poshak Gandhi

Jets at all scales

- Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the Universe.
- How is the jet produced? Necessary ingredients accretion flow and magnetic field.
- Can we compare jets that are produced in systems with different black hole mass?
- Are the jets self-similar?
- How is the accretion coupled to jet production?
- Is there a connection between jet properties and accretion rate/mode, or black hole spin?

Accretion states in XRBs – disk/jet connection

What is observed? Two distinct states of accretion:

- "Hard state" with Comptonisation dominated (i.e. power law with a cutoff) X-ray spectrum from a "corona" and a jet
 - Thermal Comptonisation dominated accretion flow (Zdziarski+98)
 - Radiatively inefficient accretion flow (Yuan+03)
 - Base of the jet (Markoff +05)
- "Intermediate state" in between of hard and...
- "Soft state" with disk dominated (i.e. blackbody) X-ray spectrum and no jet

Hard X-ray state (jet + corona)

Soft X-ray state (no jet, no corona)

Accretion states in XRBs and AGN – disk/jet connection

What is the link between the jet and the corona?

Observations from XRBs

Direct measurement

List of sources (11):

- 4U 1543-47
- Cyg X-1
- GS 1354-64
- GX 339-4
- MAXI J1659-152
- MAXI J1836-194
- V404 Cyg
- V4641 Sgr
- XTE J1118+480
- XTE J1550-564
- XTE J1752-223

References:

- Corbel+13
- Gandhi+11
- Rahoui+11
- Russell, D.+12
- Russell, D.+13
- Russell, T.+14
- van der Horst+13

Hard state: $v_b = 10^{13} - 10^{15}$ Hz Intermediate states: $v_b = 10^{10} - 10^{13}$ Hz Soft states: no compact jet

Indirect measurement

Observations from XRBs

Observations from AGNs

- Only small sample available due to lack of high-resolution NIR/MIR observations
- Mostly LLAGN with little dust
- Sub-arcsecond measurements from radio to UV with adaptive optics low-angular resolution data from archives
- Steep optically thin spectra, $\alpha < -1.0$ (quasi-thermal/fast cooling)
- Well-measured X-ray power law photon indices from literature

List of sources (7): 5 LLAGN/LINERs (NGC 1052, NGC 1097, Sgr A*, M87, NGC 4594), Cyg A, 3C 120 (Fernandez-Ontiveros+12, Canalizo+03, Lopez-Rodriguez+14, Lee+08, Asmus+14, Doi+13, NED, WISE, Akari, 2MASS)

Anti-correlation between the jet break and X-ray power law photon index

- Correlation analysis using Monte Carlo bootstrap:
 - Random data sets chosen from the normal distribution of the original data with normal errors, or from uniform distribution of the original data with limits
 - R = -0.76
 - Significance 4.6 σ
 - Linear least-squares
 regression:

 $\log v_b = -3.4^{+0.9}_{-1.4}\Gamma + 18.8^{+2.5}_{-1.6} \text{ Hz}$

Anti-correlation between L_b/L_{5GHz} and X-ray power law photon index

- L_b = Luminosity at the jet break
- L_{5GHz} = Luminosity at 5 GHz
- $L_b/L_{5GHz} = v_b S_{v,b}/v_{5GHz} S_{v,5GHz}$ = $(v_b/v_{5GHz})^{1+\alpha}$ = excess luminosity caused by the variable break frequency over the radio luminosity
- Varies between sources by six orders of magnitude
- Jet luminosities should be recalibrated taking the break frequency into account
- Monte Carlo linear least-squares regression:

 $\log L_b = \log L_{5GHz} - 3.5^{+0.9}_{-1.0}\Gamma + 9.8^{+2.0}_{-1.6} \text{ erg/s}$

Correlation between the intrinsic rms and X-ray power law photon index

- Only for XRBs (long timescales needed)
- Not very surprising considering the anti-correlation between Γ and rms (Fender, Homan & Belloni 2009).
- But it is possible that the rms is the main driver?
- Internal shock model? (Malzac 13,14)

What affects the jet properties? Conditions in the corona?

1e+00

16-02

-x/LEdd 1e-04

99-98

e-08

- New correlation: the jet brea the X-ray power law photon
- Ties in the conditions in the conditions in the jet (particle
 - Unifying link: Magnetisation regimes (MHD processes corona)?
 - Benchmark that should b models
- No mass scaling! Unexpected in the light of the fundamental plane (Heinz & Sunyaev 2003): $\nu_h \sim M(-\frac{1}{3}) \cdot (\frac{2}{3})$
- Lack of strong scaling with BH mass, accretion rate or spin hints at stable/self-similar feature

The internal properties of jets rely most critically on the conditions of the plasma close to the BH, rather than other parameters such as the BH mass, accretion rate or spin.

$$\int_{a} \int_{a} \int_{a$$

Fender & Gallo 2014