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Abstract

We present the constraints on Primordial Magnetic Fields (PMFs) derived using the Planck 2015 data
presented in Planck Collaboration et al. (2015). Since PMFs leave several imprints on the Cosmic Mi-
crowave Background (CMB) anisotropies, the CMB represents one of the best laboratory to investigate and
constrain their nature. PMFs affect the CMB angular power spectra (APS) in temperature and polarization
with their contribution to cosmological perturbations, via Faraday rotation and through the heating of matter
caused by the damping. Moreover, PMFs modelled as stochastic background have a fully non-Gaussian
contribution to the CMB anisotropy. Overall, Planck constrains the amplitude of PMFs to less than a few
nanogauss. In particular, individual limits coming from the analysis of the CMB APS, using the Planck
likelihood, are B1 Mpc < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95 %
CL, assuming zero helicity, and B1 Mpc < 5.6 nG when we consider a maximally helical field. For nearly
scale-invariant PMFs we obtain B1 Mpc < 2.0 nG, and B1 Mpc < 0.9 nG when the impact of PMFs on the
ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced
non-Gaussianity we obtain three different values, corresponding to three applied methods, all below 5 nG
with the strongest being B1 Mpc < 2.8 nG for nearly scale-invariant fields. Together, these results comprise a
comprehensive set of constraints on the existence of PMFs with Planck data.

1 Introduction

Magnetic fields are ubiquitous in our Universe, they are observed in large scale structures like galaxies and
clusters. Recent high-energy data seems to be compatible also with cosmological magnetic fields not associated
with structures. The origin of large-scale magnetic fields is strongly debated, one hypothesis is that these are
remnants of primordial fields generated in the early Universe. In addition, several early-Universe scenarios
predict the generation of cosmological magnetic fields, either during inflation, during phase transitions, or via
other physical processes. Therefore, PMFs may provide the seeds to generate large scale magnetic fields, but
they may also provide a new observational window to the early Universe (for a review see Durrer & Neronov
2013).

The most widely used model of PMFs is a stochastic background modelled as a fully inhomogeneous
component of the cosmological plasma (the contributions at the homogeneous level are negligible), with the
energy momentum tensor components (quadratic in the fields) on the same footing as cosmological perturba-
tions. Within this model, PMFs leave several signatures in the CMB temperature and polarization anisotropy
patterns: on the CMB power spectra in temperature and polarization by magnetically-induced perturbations; on
the polarization power spectra by the Faraday rotation; on CMB non-Gaussianities with the related non-zero
magnetically-induced bispectra. In the magnetohydrodynamical (MHD) limit, the evolution of the magnetic
field with time is simply dilution with cosmic expansion B(k, τ) = B(k)a(τ)−2, where a(τ) is the scale factor and
τ the conformal time.
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Figure 1: Magnetically-induced CMB APS. The first panel is the comparison between different modes. The
second panel is the variation of the magnetically-induced APS with the spectral index. The third panel is the
comparison between a maximally helical and non-helical PMFs.

2 Constraints from the magnetically-induced perturbations

PMFs source all types of cosmological perturbations, i.e., scalar, vector, and tensor perturbations, with different
initial conditions. We focus on the compensated (Giovannini, 2004; Finelli, Paci, & Paoletti, 2008) and passive
(Lewis, 2004; Shaw & Lewis, 2010) initial conditions, that are both independent on the generation mechanism
of the fields. We model the PMFs with a power law power spectrum for both non-helical and helical part PB(k) =

AB knB , PH(k) = AH knH . Magnetically-induced perturbations survive the Silk damping but are suppressed on
smaller scales by radiation viscosity. We model this suppression with a sharp cut-off in the PMFs power
spectrum, at the scale kD (Subramanian & Barrow, 1998). The amplitude of PMFs may be expressed with the
convention to smooth over a comoving scale of λ = 1 Mpc, B2

λ =
∫ ∞

0
dk k2

2π2 e−k2λ2
PB(k) =

AB
4π2λnB+3 Γ

(
nB+3

2

)
.

We refer to the treatment of magnetically-induced perturbations presented in Lewis (2004), Finelli, Paci,
& Paoletti (2008), Paoletti, Finelli, & Paci (2009), Shaw & Lewis (2010) and Ballardini, Finelli, & Paoletti
(2015). In the first panel of Fig.1 we show the impact of magnetically-induced, scalar, vector and tensor
perturbations on the CMB anisotropy temperature APS. We note that the dominant contribution is given by
vector mode on small angular scales. The shape of the magnetically-induced power spectra strongly depends on
the source of the magnetically induced perturbations: the PMF energy momentum tensor (EMT) components.
These components are a white noise for indices nB > −3/2 and are ∝ k2nB+3 for −3 < nB < −3/2. This
behaviour is reflected on the CMB APS shown in Fig.1 for the passive tensor mode. The addition of a maximally
helical component to the fields leads to a reduction of the amplitude of the magnetically-induced spectra as is
shown in the comparison of the third panel of Fig.1. We used an extension to the public MCMC cosmomc
code developed to include PMF contribution (Paoletti & Finelli, 2011, 2013) to derive the constraints on PMF
amplitude. In particular, with the Planck 2015 likelihood we obtain B1 Mpc < 4.4 nG (4.5 nG when including
high ell polarization) at 95% CL as shown in Fig.2, we also note the strong degeneracy between the amplitude
and the spectral index, we have B1 Mpc < 2.0 nG for nearly scale-invariant PMFs . The maximally helical PMF
have a weaker constraint, B1 Mpc < 5.6 nG at 95% CL due to the lower amplitude of the magnetically-induced
APS. The results of a joint analysis Planck-BICEP 2/KECK array are B1Mpc < 4.7 nG at 95% CL, compatible
with Planck alone case.

PMFs are dissipated via two additional effects, which take place in the magnetized plasma, after recom-
bination: ambipolar diffusion and MHD turbulence. The dissipation injects magnetic energy into the plasma,
heating it and thereby modifying the optical depth of recombination, with an impact on the primary CMB
power spectra (Kunze & Komatsu, 2015; Chluba et al., 2015). This effect leads to B1 Mpc < 0.9 nG for nearly
scale-invariant PMFs with Planck 2015 likelihood.

3 Constraints from non-Gaussainities

PMFs modelled as a stochastic background have a non-Gaussian contribution to CMB anisotropies since the
components of the energy momentum tensor are quadratic in the fields and therefore approximately follow a
χ2 statistics (Brown & Crittenden, 2005). PMFs generate non-zero higher-order statistical moments and CMB
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Figure 2: Constraints on PMFs amplitude with the Planck 2015 likelihood. We show the constraints on
non-helical PMFs, the results for a maximally helical PMFs and the results of the joint analysis of Planck-
BICEP2/Keck, respectively in the first, second and third panel.

non-Gaussianities give complementary constraints on PMF amplitude. We present three different methods for
constraining PMFs using non-Gaussianity measurements all involving the bispectrum and focused on the nearly
scale invariant PMFs.

We derive the constraints from the passive-tensor bispectrum. In the case of nearly scale-invariant fields
the magnetically-induced bispectrum is amplified in the squeezed-limit configuration with `1 � `2 ≈ `3, as a
consequence of the local-type structure of the magnetically-induced gravitational wave. The resultant bispec-
trum is given by a non-factorizable combination of `-modes (Shiraishi et al., 2011, 2012) and its amplitude

can be connected to the amplitude of the fields: AMAG
bis =

( B1 Mpc
3 nG

)6 [
ln(τν/τB)
ln(1017)

]3
where τν and τB are the neutrino

decoupling time and the PMFs generation time. In order to constrain the non-factorizable magnetically-induced
bispectrum, we use the optimal estimator called separable modal methodology (see Shiraishi, Liguori, & Fer-
gusson 2015 for auto-bispectra and Fergusson 2014 for cross-bispectra). With the foreground-cleaned SMICA
temperature map, we obtain B1 Mpc < 2.8 nG at 95% CL, assuming τν/τB = 1017.

We derive the constraints also using the passive scalar modes and the estimation of the expansion coeffi-
cients cL of the three point correlation function of the magnetically-induced curvature perturbation (Shiraishi

et al., 2013): 〈ζ(~k1) ζ(~k2) ζ(~k3)〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)
∑

L cL

(
PL(~̂k1 · ~̂k2) Pζ(k1) Pζ(k2) + 2 perm.

)
, where c0

is related to the local-form fNL as c0 = 6/5 f local
NL and PL is the Lth order Legendre polynomial. The Legendre

coefficients are related to the PMF amplitude as: c1 ≈ −0.9
( B1 Mpc

nG

)2 (
B1 Mpc

nG

)4
and c2 ≈ −2.8 × 10−3

( B1 Mpc
nG

)6
.

We do not consider a possible helical component (B1 Mpc) in this analysis. We estimate c2 from SMICA, NILC,
SEVEM, and Commander foreground-cleaned maps, assuming again τν/τB = 1017. The constraints for all the
maps are at the level of few nG with the strongest one coming from SMICA: B1 Mpc < 4.5 nG at 95% CL.

Finally we use the compensated bispectrum with a semi-analytical technique for the scalar mode. We com-
pute an effective fNL based on the comparison between the bispectrum and the power spectrum, and derive
the constraints on the amplitude of the PMFs. The analysis is based on the treatment presented by Caprini
et al. (2009). The temperature anisotropy on large angular scales depends on the PMF energy density, there-
fore, the magnetically induced bispectrum depends on the three point correlation function of the PMF energy
density:〈ρB(~k) ρB(~q) ρB(~p)〉. In Caprini et al. (2009) it is presented an approximation for this three point corre-
lation function from which it is possible to derive the bispectrum. Once computed the bispectrum, it is possible
to estimate an effective f eff

NL to be compared with the measurements. For the nearly scale-invariant case we

have: f eff
NL ≈

3π9 α3

36A2
nB(nB+3)2

2nB+3
〈B2〉3

ρ3
rel

= 1851 nB(nB+3)2

2nB+3

(
〈B2〉

(10−9 G)2

)3
. With Planck 2015 measurements the constraints

on the amplitude of the nearly scale invariant fields is B1 Mpc < 3 nG at 95% CL.
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4 Faraday rotation

The presence of PMFs at the CMB last scattering surface induces a rotation of the polarization plane of the CMB
photons, the Faraday Rotation (FR), which induces a B-mode polarization from the E-mode. The generation
of magnetically-induced B-modes through FR of E-modes is described by (Kosowsky et al., 2005): C′BB

` =

N2
`

∑
`1`2

(2`1+1)(2`2+1)
4π(2`+1) N2

`2
K(`, `1, `2)2 CEE

`2
Cα
`1

(
C`0
`10`20

)2
, where N` = (2(` − 2)!/(` + 2)!)1/2 is a normalization

factor, K(`, `1, `2) = −1/2 (L2 + L2
1 + L2

2 − 2L1L2 − 2L1L + 2L1 − 2L2 − 2L) with L ≡ `(` + 1), L1 ≡ `1(`1 + 1),
L2 ≡ `2(`2 + 1), and C`0

`10`20 is a Clebsch-Gordan coefficient.
The power spectrum of the rotation angle is strongly dependent on the observed frequency ν0 :Cα

`
= ν−4

0 CΦ
` ,

and the rotation power spectrum s given by: CΦ
` ≈

9`(`+1)
(4π)3e2

B2
1 Mpc

Γ(nB+3/2)

(
λ
τ0

)nB+3 ∫ xD

0 dx xnB j2` (x) with xD = τ kD. We
use the observed Planck E-mode spectrum C′EE

` at 70 GHz as a proxy for the primordial one, CEE
` to calculate

predicted B-mode spectra to be compared with the observed one. By using the EE information at 70 GHz for
` < 30, provided by the low-` likelihood, we obtain B1 Mpc < 1380 nG at 95% CL.

Planck 2015 data provide a set of complementary constraints on PMFs, from the CMB APS to the non-
Gaussianities to the Faraday rotation. Overall Planck 2015 constrains PMFs amplitude at the level of the
nanoGauss.
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