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Introduction: Neutron Star

?
Crust
Nuclear density

Core 
  Composition ? 
  (neutron, hyperon, quark) 

  Interaction? 
  etc

Many mysteries in deep inside of neutron stars. 

Mass ~ 1.4 Msun, Radius ~ 10km



Introduction: Neutron Star EoS & M-R

ALF2 has small pressure for ! ! !2 as in the case of
APR4, but for !2 & ! ! !3 the pressure is higher than
that for APR4. For ! " !2 the pressure of ALF2 is as high
as that for H4. The profile of Shen is similar to H4 although
Shen has slightly higher pressure than H4 for a given value
of the density. Also, APR4 and SLy are similar EOSs, but
the slight difference between two EOSs results in a signifi-
cant difference in the merger remnants for canonical-mass
binary neutron stars (see Sec. III).

All the properties mentioned above are reflected in the
radius R1:35 and central density !1:35 of (cold) spherical
neutron stars with the canonical mass M ¼ 1:35M$ [33]
where M is the gravitational [Arnowitt-Deser-Misner
(ADM)] mass of the cold spherical neutron stars in iso-
lation; see Table I. The pressure at ! ¼ !2 (i.e., P2) is
correlated well with this radius and central density [34]
(see also below).

In the numerical simulation, we used a modified version
of the piecewise polytropic EOS to approximately take into
account thermal effects. In this EOS, the pressure and
specific internal energy are decomposed into cold and
thermal parts as

P ¼ Pcold þ Pth; " ¼ "cold þ "th: (1)

The cold parts of both variables are calculated using the
original piecewise polytropic EOS from the primitive vari-
able !, and then the thermal part of the specific internal
energy is defined from " as "th ¼ "& "coldð!Þ. Because "th
vanishes in the absence of shock heating, it is regarded as
the finite-temperature part determined by the shock heating
in the present context. For the thermal part of the pressure
and specific internal energy, a !-law ideal-gas EOS was
adopted as

Pth ¼ ð!th & 1Þ!"th: (2)

Following the conclusion of a detailed study in [35], !th is
chosen in the range 1.6–2.0 with the canonical value 1.8.
For several models, simulations were performed varying
the value of !th (see Table II).

B. Models

Numerical simulations were performed for a variety
of EOSs and for many sets of masses of binary neutron
stars. Because the mass of each neutron star in the
observed binary systems is in a narrow range between
)1:23–1:45M$ [33], we basically choose the neutron
star masses 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1:5M$
with the canonical mass 1:35M$ (the canonical total mass
m ¼ m1 þm2 ¼ 2:7M$). Also, the mass ratio of the
observed system q :¼ m1=m2ð! 1Þ where m1 and m2

denote the mass of lighter and heavier neutron stars, re-
spectively, is in a narrow range)0:85–1. Thus, we choose
q as 0:8 ! q ! 1. The models employed in the present
analysis are listed in Table II. In the following, we specify
the model by the names listed in this table. We note that for
APR4 and SLy, a black hole is formed promptly after the
onset of the merger for m " 2:9M$ and m " 2:8M$,
respectively. (Although they are not listed in Table II, we
performed a simulation for m1 ¼ m2 ¼ 1:4M$ with SLy
and three simulations for m ¼ 2:9M$ with APR4.)
We found that for models withm ! 2:7M$, MNSs were

always formed irrespective of the EOSs employed. Even
for m ¼ 2:8M$, MNSs were formed for all the EOSs
except for SLy. For stiffer EOSs, MNSs can be formed
even for m ¼ 3M$ (e.g., for Shen and MS1 EOSs). Thus,
for H4, MS1, and Shen, we performed simulations for
higher-mass models with m2 ¼ 1:6M$. The models in
which MNSs are formed are summarized in Table II. In
Secs. III and IV, we will analyze the evolution process of
the MNSs and the waveform of emitted gravitational
waves, derived for these models.
Numerical simulations with the piecewise polytropic

EOSs were performed using an adaptive-mesh refinement
code SACRA [36]. For these simulations, the semimajor
diameter of neutron stars is initially covered by *100
grid points (we refer to this grid resolution as high resolu-
tion). We also performed lower-resolution simulations cov-
ering the the semimajor axis by*65 and 80 grid points (we
refer to these grid resolutions as low and middle resolu-
tions). The accuracy and convergence of the numerical
results for the high grid resolution is found in [12] and in
the Appendix; e.g., the averaged frequency of gravitational
waves emitted from MNSs is determined within)0:1 kHz
error. Numerical simulations with Shen EOS were per-
formed using a code developed in [10,11]. For these simu-
lations, the semimajor diameter of neutron stars is initially
covered by *80 grid points. The accuracy and conver-
gence of the numerical results for the high grid resolution
would be slightly poorer than those in the piecewise poly-
tropic EOS case. For comparison, we performed simula-
tions using these two codes with the same total mass and
EOS, H4-135135. Then, we found that the averaged fre-
quency of gravitational waves emitted by hypermassive
neutron stars (HMNS) agrees with each other within 1%
accuracy. For all these simulations, the initial data were
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FIG. 1 (color online). Pressure as a function of the rest-mass
density for the seven EOSs listed in Table I.
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of the system for the outside of the horizon. However, this
pathology could still break a numerical simulation after the
formation of a black hole. To avoid this happens, we
artificially set the maximum density as 1016 g=cm3 when
employing this EOS.

Figure 2 plots the gravitational mass as a function of the
central density and as a function of the circumferential
radius for spherical neutron stars for four EOSs. All the
EOSs chosen are stiff enough that the maximum mass is
larger than 1:97M!. Because the pressure in a density
region ! & 1015 g=cm3 is relatively small (i.e., P2 is
small) for APR4 and ALF2, the radius for these EOSs is
relatively small as "11 km and 12.5 km, respectively, for
the canonical mass of neutron stars 1:3–1:4M! [38]. By
contrast, for H4 and MS1 for which P2 is relatively large,
the radius becomes a relatively large value 13.5–14.5 km
for the canonical mass. The radius has also the correlation
with the central density !c. For APR4 and ALF2 with
M¼1:35M!, !c$8:9%1014 g=cm3 and !c $ 6:4%
1014 g=cm3. For H4 and MS1 with M ¼ 1:35M!, the
central density is rather low as !c $ 5:5% 1014 g=cm3

and !c $ 4:1% 1014 g=cm3, respectively. As we show in
Sec. IV, the properties of the material ejected from the
merger of binary neutron stars depend strongly on the
radius of the neutron stars or !c.

B. Initial conditions

We employ binary neutron stars in quasiequilibria for
the initial condition of numerical simulations as in our
series of papers [24,25]. The quasiequilibrium state is
computed in the framework described in [39] to which
the reader may refer. The computation of quasiequilibrium
states is performed using the spectral-method library
LORENE [40].

Numerical simulations were performed, systematically
choosing wide ranges of the total mass and mass ratio of
binary neutron stars. Because the mass of each neutron star

in the observed binary systems is in a narrow range
"1:2–1:45M! [38], we basically choose the neutron-star
mass 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1:5M!. Also,
the mass ratio of the observed system q :¼ m1=m2ð' 1Þ
where m1 and m2 are lighter and heavier masses, respec-
tively, is in a narrow range"0:85–1. Thus, we choose q as
0:8 ' q ' 1. Specifically, the simulations were performed
for the initial data listed in Table II.
The initial data were prepared so that the binary has

about 3–4 quasicircular orbits before the onset of the
merger. For four EOSs chosen, this requirement is approxi-
mately satisfied with the choice of the initial angular
velocity m!0 ¼ 0:026 for APR4 and ALF2 and
m!0 ¼ 0:025 for H4 and MS1. Here, m ¼ m1 þm2.
For the following, the model is referred to as the name
‘‘EOS’’-‘‘m1’’ ‘‘m2’’; e.g., the model employing APR4,
m1 ¼ 1:2M!, and m2 ¼ 1:5M! is referred to as model
APR4-120150.

III. FORMULATION AND NUMERICALMETHODS

Numerical simulations were performed using an
adaptive-mesh refinement (AMR) code SACRA [41] (see
also [42] for the reliability of SACRA). The formulation, the
gauge conditions, and the numerical scheme are basically
the same as those described in [41], except for the improve-
ment in the treatment of the hydrodynamics code for a far
region. Thus, we here only briefly review them and
describe the present setup of the computational domain
for the AMR algorithm and grid resolution.

A. Formulation and numerical methods

SACRA solves Einstein’s evolution equations in the
Baumgarte-Shapiro-Shibata-Nakamura formalism with a
moving-puncture gauge [43]. It evolves a conformal factor
W :¼ "*1=6, the conformal three-metric ~"ij :¼ "*1=3"ij,
the trace of the extrinsic curvature K, a conformally
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FIG. 2 (color online). Left: The gravitational mass as a function of the central density !c for spherical neutron stars in APR4, ALF2,
H4, and MS1 EOSs (the solid, dashed, dotted, and dash-dotted curves). Right: The same as the left panel but for the gravitational mass
as a function of the circumferential radius.
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EOS Mass & Radius

1 to 1 correspondence between EOS and M-R relation. 
Measurements of Mass & Radius => High-dense material. 



GWs as a probe of NSs

・The masses can be measured using the chirp signal 
・Neutron Star’s size affects gravitational-waves of mergers
Tidal effect in pre-mergers: 
   Flanagan & Hinderer 2008 

Hinderer et al 2010 
Damour, Nagar, & Villain 2012 
Agathos et al 2015

Bauswein & Janka 2012  
Baustein et al 2014 
Hotokezaka et al 2013

Read et al 2010, 2013
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FIG. 5 (color online). Gravitational waveforms and their spectra. The solid and dashed curves in the left panels denote the
waveforms calculated by the simulation and Taylor T4 formula, respectively. The solid and dashed curves in the right panels denote the
spectra calculated by the simulation, and spectrum calculated by Taylor T4 formula, respectively, at a hypothetical source distance of
100 Mpc. The effective amplitude for the most optimistic direction of the source is shown. Here the noise levels of advanced LIGO
(Optimal NSNS version), LCGT (Broadband version), and Einstein Telescope are shown together. (1a) and (1b) for APR4-27
(type III), (2a) and (2b) for H3-27 (type II), (3a) and (3b) for H4-27 (type III), (4a) and (4b) for PS-27 (type III).
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Cut off at the merger:
Kiuchi et al 2010, Lackey et al 2014



Tidal interaction in binaries 

Tidal deformability parameter

⇤2 = 2
3
R5

2
G k2

Binary inspiral

The orbital motion is affected by the tidal effect. 
The leading of the tidal effect is 5PN order.  

M1

M2, Q2

Dimensionless tidal Love number

Eint ⇡ �M1
r

⇣
M2 +

3Q2

2r2

⌘

Q2 ⇠ ⇤2
GM1
r3



Tidal deformability of neutron stars
Hinderer et al 2010, see also Damour and Nagar 2009

⇤2 = 2
3
R5

2
G k2 Questions: 

What is the measurability of  
tidal deformability parameters?  

Can we distinguish a BNS 
merger from a BBH with  
the same mass ? 



Waveform
The tidal effect is stronger in later times of inspiral. 
=> We want to use the information up to the merger. 

In fact, Read et al 2014 show that hybrid waveforms of analytic and NR 
waveforms improve the measurability of tidal deformability parameters. 

But, the truncation error of post-Newtonian causes    
parameter estimation biases. 
(Favata 2014, Yagi & Yunes 2014, Wade et al 2014) 

Motivated by this, we compute late-inspiral waveforms using 
numerical relativity 



High accuracy Numerical Relativity

resolved runs. The free parameters, η0 and ϕ, are varied for a
wide range and from 0 to 2π, respectively, to search for the
possible minimum value of I. ti and tf are chosen to be
5 ms and tmrg of the best resolved run, respectively. Here,
the reason for choosing ti ¼ 5ms is that for their early
stage with tret ≲ 5 ms, the numerical waveforms have a
relatively large modulation in amplitude and phase due to
junk radiation.

We find for our present simulation results that for the
second-finest, third-finest, and poorest resolution runs,
η0 ¼ 1.00646, 1.02241, and 1.06000 for the H4 EOS
and η0 ¼ 1.00650, 1.02931, and 1.09118 for the APR4
EOS. The mismatched factors, respectively, are I=I0 ¼
7.4 × 10−6, 2.3 × 10−5, and 1.4 × 10−4 for the H4 EOS
and I=I0 ¼ 7.4 × 10−6, 1.1 × 10−4, and 1.4 × 10−3 for the
APR4 EOS. Here, we define
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FIG. 2 (color online). The gravitational waveforms and the evolution of the gravitational wave phase for four different grid-resolution
runs with the H4 EOS (left three panels) and with the APR4 EOS (right three panels). N indicates the grid resolution, Δx8 ∝ N−1.
The upper panels show the gravitational waveforms for three different grid resolutions. The middle panels show the pure numerical wave
phases and the bottom panels show the results obtained after the stretching of time and phase according to the convergence property (for
N ¼ 40, 48, and 60). The lower plots in middle and bottom panels show the phase disagreement between the purely numerical wave
phase for N ¼ 72 and the lower resolution results. Note that for N ¼ 72, tmrg ¼ 58.43 ðmsÞ for the H4 EOS and tmrg ¼ 61.08 ðmsÞ for
the APR4 EOS.

HOTOKEZAKA et al. PHYSICAL REVIEW D 91, 064060 (2015)

064060-6

Long-term           : ~15 orbits 
Low eccentricity : e < 0.001 see Kyutoku et al 2014 for a method

Hotokezaka et al 2015



Resolution Extrapolation

time

phase
HighMed

Low

The finite resolution effects systematically cause 
overestimates of the tidal effects. 
=> A extrapolation procedure is needed.



Resolution Extrapolation

time

phase
HighMed

Low

Delta_x => 0

work, we employ Ψl;m;∞
4 ðtret; r0Þ computed from the data

extracted at r0 ¼ 200m0 [hereafter written as Ψl;m;∞
4 ðtretÞ]

without further processing and perform subsequent analy-
ses keeping in mind that in the amplitude extrapolated by
Eq. (3.1) there could exist a local error in magnitude up to
∼3% of the exact amplitude (note that in average the error
would be much smaller than 3%).

B. Extrapolation for zero-grid spacing limit

Next, we consider the resolution extrapolation for the
limit Δx8 → 0. For this task, numerical simulations have to
be performed for more than three grid resolutions. In this
study, we performed four simulations for each model
employing four different grid resolutions (compare
Table I for the finest grid spacing, Δx8, for each run).
For each run, we extracted the numerical waveform at r0 ¼
200 m0 and then performed the extrapolation of r0 → ∞ as
described in Eq. (3.1).
We then need to perform an extrapolation procedure of

taking the zero grid-spacing limit for obtaining an approx-
imately exact solution. For this procedure, we first analyze
the relation of the time to the merger, tmrg, as a function
of Δx8 following Ref. [23]. Here, the merger time, tmrg, is
defined as the time at which the maximum value of
jΨ2;2;∞

4 ðtretÞj is recorded. Then, it is found that tmrg

converges to an unknown exact value at approximately
the fourth order (see below for more detailed analysis). tmrg
is larger for the better grid resolutions because for the lower
grid resolutions, the numerical dissipation is larger and the
inspiraling process is spuriously accelerated. This numeri-
cal error is universally present for finite values of Δx8; that
is, for any inspiraling stage in any numerical simulations,
the error is always present. For obtaining the “exact”
waveform, thus, we always need an extrapolation pro-
cedure. Then, the next question is how to extrapolate the
waveform for the limit Δx8 → 0. We propose the following
method in this study.
We first determine the gravitational waveform and time

evolution of the angular frequency as functions of tret by
integrating Ψl;m;∞

4 ðtretÞ for each raw numerical data. Here,
the gravitational waveform for each multipole mode sat-
isfies [see Eq. (2.4)]

ḧl;m ≔ ḧl;mþ − iḧl;m× ¼ −Ψl;m;∞
4 ðtretÞ: ð3:2Þ

hl;m is obtained by the double time integration of Ψl;m;∞
4 .

For this procedure, we employ the method of Ref. [44],
written as

hl;mðtretÞ ¼
Z

dω
Ψl;m;∞

4 ðωÞ
maxðω;ωcutÞ2

expðiωtretÞ; ð3:3Þ

whereΨl;m;∞
4 ðωÞ is the Fourier transform ofΨl;m;∞

4 ðtretÞ and
ωcut is chosen to be 1.6Ω0. (Note that at the initial stage, the
value of ω is 2Ω0 > ωcut.) We recall again that in this paper

we pay attention only to l ¼ jmj ¼ 2 modes because these
are the dominant modes in particular for the equal-mass
binaries. Then, from Eq. (3.3), we determine the evolution
of the amplitude, i.e., Al;m ¼ jhl;mj as a function of tret.
Using Eq. (3.3), we can also define the evolution of the

angular frequency as

ωðtretÞ≔
j _h2;2j
jh2;2j

; ð3:4Þ

and then, the evolution of the gravitational-wave phase is
calculated by

ΦðtretÞ≔
Z

tret
dt0ωðt0Þ: ð3:5Þ

Now, using A2;2 and Φ, the quadrupole gravitational
waveform can be written as

h2;2ðtretÞ ¼ A2;2ðtretÞ exp ½iΦðtretÞ&: ð3:6Þ

Figure 2 plots the resulting gravitational waveforms and
the evolution of Φ obtained in the simulations with
different grid resolutions for the models with H4 (left)
and APR4 EOS (right). The upper panels plot the
gravitational waveforms, and these show that the merger
time is earlier for the poorer grid resolutions. The middle
panels plot the integrated wave phases for the pure
numerical results with no reprocessing. These show that
the phase evolution is spuriously faster for the poorer grid
resolutions. However, we already know that the merger
time converges approximately at fourth order. Taking into
account this fact, we stretch the time axis for the
gravitational waveform by an appropriate factor as
t → ηt where ηð>1Þ is the constant stretching factor.
This factor should be larger for the results of the poorer
grid resolutions. Here, this reprocessing is performed in
the same manner as in [23]: tret and Φ are modified as
tret → ηtret and Φ → ηΦ. We show that the phase evolution
matches very well among the waveforms with different
grid resolutions after this scaling performed in terms of
this single parameter η. Later, η will be also used for
determining the convergence order and for obtaining the
resolution-extrapolated waveform.
As a first step for this stretching procedure, we have to

determine the values of η. As the first substep, we carry out
a procedure for finding the minimum value of the following
integral

I ¼ min
η0;ϕ

Z
tf

ti
dtretjA2;2

2 ðη0tretÞ exp½iη0Φ2ðη0tretÞ þ iϕ&

− A2;2
1 ðtretÞ exp½iΦ1ðtretÞ&j2 ð3:7Þ

where A2;2
1 and Φ1 are, respectively, the amplitude and

integrated phase of the gravitational waveform for the best
resolved run (N ¼ 72) and A2;2

2 and Φ2 are those for less
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work, we employ Ψl;m;∞
4 ðtret; r0Þ computed from the data

extracted at r0 ¼ 200m0 [hereafter written as Ψl;m;∞
4 ðtretÞ]

without further processing and perform subsequent analy-
ses keeping in mind that in the amplitude extrapolated by
Eq. (3.1) there could exist a local error in magnitude up to
∼3% of the exact amplitude (note that in average the error
would be much smaller than 3%).

B. Extrapolation for zero-grid spacing limit

Next, we consider the resolution extrapolation for the
limit Δx8 → 0. For this task, numerical simulations have to
be performed for more than three grid resolutions. In this
study, we performed four simulations for each model
employing four different grid resolutions (compare
Table I for the finest grid spacing, Δx8, for each run).
For each run, we extracted the numerical waveform at r0 ¼
200 m0 and then performed the extrapolation of r0 → ∞ as
described in Eq. (3.1).
We then need to perform an extrapolation procedure of

taking the zero grid-spacing limit for obtaining an approx-
imately exact solution. For this procedure, we first analyze
the relation of the time to the merger, tmrg, as a function
of Δx8 following Ref. [23]. Here, the merger time, tmrg, is
defined as the time at which the maximum value of
jΨ2;2;∞

4 ðtretÞj is recorded. Then, it is found that tmrg

converges to an unknown exact value at approximately
the fourth order (see below for more detailed analysis). tmrg
is larger for the better grid resolutions because for the lower
grid resolutions, the numerical dissipation is larger and the
inspiraling process is spuriously accelerated. This numeri-
cal error is universally present for finite values of Δx8; that
is, for any inspiraling stage in any numerical simulations,
the error is always present. For obtaining the “exact”
waveform, thus, we always need an extrapolation pro-
cedure. Then, the next question is how to extrapolate the
waveform for the limit Δx8 → 0. We propose the following
method in this study.
We first determine the gravitational waveform and time

evolution of the angular frequency as functions of tret by
integrating Ψl;m;∞

4 ðtretÞ for each raw numerical data. Here,
the gravitational waveform for each multipole mode sat-
isfies [see Eq. (2.4)]

ḧl;m ≔ ḧl;mþ − iḧl;m× ¼ −Ψl;m;∞
4 ðtretÞ: ð3:2Þ

hl;m is obtained by the double time integration of Ψl;m;∞
4 .

For this procedure, we employ the method of Ref. [44],
written as

hl;mðtretÞ ¼
Z

dω
Ψl;m;∞

4 ðωÞ
maxðω;ωcutÞ2

expðiωtretÞ; ð3:3Þ

whereΨl;m;∞
4 ðωÞ is the Fourier transform ofΨl;m;∞

4 ðtretÞ and
ωcut is chosen to be 1.6Ω0. (Note that at the initial stage, the
value of ω is 2Ω0 > ωcut.) We recall again that in this paper

we pay attention only to l ¼ jmj ¼ 2 modes because these
are the dominant modes in particular for the equal-mass
binaries. Then, from Eq. (3.3), we determine the evolution
of the amplitude, i.e., Al;m ¼ jhl;mj as a function of tret.
Using Eq. (3.3), we can also define the evolution of the

angular frequency as

ωðtretÞ≔
j _h2;2j
jh2;2j

; ð3:4Þ

and then, the evolution of the gravitational-wave phase is
calculated by

ΦðtretÞ≔
Z

tret
dt0ωðt0Þ: ð3:5Þ

Now, using A2;2 and Φ, the quadrupole gravitational
waveform can be written as

h2;2ðtretÞ ¼ A2;2ðtretÞ exp ½iΦðtretÞ&: ð3:6Þ

Figure 2 plots the resulting gravitational waveforms and
the evolution of Φ obtained in the simulations with
different grid resolutions for the models with H4 (left)
and APR4 EOS (right). The upper panels plot the
gravitational waveforms, and these show that the merger
time is earlier for the poorer grid resolutions. The middle
panels plot the integrated wave phases for the pure
numerical results with no reprocessing. These show that
the phase evolution is spuriously faster for the poorer grid
resolutions. However, we already know that the merger
time converges approximately at fourth order. Taking into
account this fact, we stretch the time axis for the
gravitational waveform by an appropriate factor as
t → ηt where ηð>1Þ is the constant stretching factor.
This factor should be larger for the results of the poorer
grid resolutions. Here, this reprocessing is performed in
the same manner as in [23]: tret and Φ are modified as
tret → ηtret and Φ → ηΦ. We show that the phase evolution
matches very well among the waveforms with different
grid resolutions after this scaling performed in terms of
this single parameter η. Later, η will be also used for
determining the convergence order and for obtaining the
resolution-extrapolated waveform.
As a first step for this stretching procedure, we have to

determine the values of η. As the first substep, we carry out
a procedure for finding the minimum value of the following
integral

I ¼ min
η0;ϕ

Z
tf

ti
dtretjA2;2

2 ðη0tretÞ exp½iη0Φ2ðη0tretÞ þ iϕ&

− A2;2
1 ðtretÞ exp½iΦ1ðtretÞ&j2 ð3:7Þ

where A2;2
1 and Φ1 are, respectively, the amplitude and

integrated phase of the gravitational waveform for the best
resolved run (N ¼ 72) and A2;2

2 and Φ2 are those for less
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work, we employ Ψl;m;∞
4 ðtret; r0Þ computed from the data

extracted at r0 ¼ 200m0 [hereafter written as Ψl;m;∞
4 ðtretÞ]
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hl;m is obtained by the double time integration of Ψl;m;∞
4 .

For this procedure, we employ the method of Ref. [44],
written as

hl;mðtretÞ ¼
Z
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Ψl;m;∞

4 ðωÞ
maxðω;ωcutÞ2

expðiωtretÞ; ð3:3Þ

whereΨl;m;∞
4 ðωÞ is the Fourier transform ofΨl;m;∞

4 ðtretÞ and
ωcut is chosen to be 1.6Ω0. (Note that at the initial stage, the
value of ω is 2Ω0 > ωcut.) We recall again that in this paper

we pay attention only to l ¼ jmj ¼ 2 modes because these
are the dominant modes in particular for the equal-mass
binaries. Then, from Eq. (3.3), we determine the evolution
of the amplitude, i.e., Al;m ¼ jhl;mj as a function of tret.
Using Eq. (3.3), we can also define the evolution of the

angular frequency as

ωðtretÞ≔
j _h2;2j
jh2;2j

; ð3:4Þ

and then, the evolution of the gravitational-wave phase is
calculated by

ΦðtretÞ≔
Z

tret
dt0ωðt0Þ: ð3:5Þ

Now, using A2;2 and Φ, the quadrupole gravitational
waveform can be written as

h2;2ðtretÞ ¼ A2;2ðtretÞ exp ½iΦðtretÞ&: ð3:6Þ

Figure 2 plots the resulting gravitational waveforms and
the evolution of Φ obtained in the simulations with
different grid resolutions for the models with H4 (left)
and APR4 EOS (right). The upper panels plot the
gravitational waveforms, and these show that the merger
time is earlier for the poorer grid resolutions. The middle
panels plot the integrated wave phases for the pure
numerical results with no reprocessing. These show that
the phase evolution is spuriously faster for the poorer grid
resolutions. However, we already know that the merger
time converges approximately at fourth order. Taking into
account this fact, we stretch the time axis for the
gravitational waveform by an appropriate factor as
t → ηt where ηð>1Þ is the constant stretching factor.
This factor should be larger for the results of the poorer
grid resolutions. Here, this reprocessing is performed in
the same manner as in [23]: tret and Φ are modified as
tret → ηtret and Φ → ηΦ. We show that the phase evolution
matches very well among the waveforms with different
grid resolutions after this scaling performed in terms of
this single parameter η. Later, η will be also used for
determining the convergence order and for obtaining the
resolution-extrapolated waveform.
As a first step for this stretching procedure, we have to

determine the values of η. As the first substep, we carry out
a procedure for finding the minimum value of the following
integral

I ¼ min
η0;ϕ

Z
tf

ti
dtretjA2;2

2 ðη0tretÞ exp½iη0Φ2ðη0tretÞ þ iϕ&

− A2;2
1 ðtretÞ exp½iΦ1ðtretÞ&j2 ð3:7Þ

where A2;2
1 and Φ1 are, respectively, the amplitude and

integrated phase of the gravitational waveform for the best
resolved run (N ¼ 72) and A2;2

2 and Φ2 are those for less
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Uniformly stretching

taking a limit Delta_x -> 0.



Resolution Extrapolation

resolved runs. The free parameters, η0 and ϕ, are varied for a
wide range and from 0 to 2π, respectively, to search for the
possible minimum value of I. ti and tf are chosen to be
5 ms and tmrg of the best resolved run, respectively. Here,
the reason for choosing ti ¼ 5ms is that for their early
stage with tret ≲ 5 ms, the numerical waveforms have a
relatively large modulation in amplitude and phase due to
junk radiation.

We find for our present simulation results that for the
second-finest, third-finest, and poorest resolution runs,
η0 ¼ 1.00646, 1.02241, and 1.06000 for the H4 EOS
and η0 ¼ 1.00650, 1.02931, and 1.09118 for the APR4
EOS. The mismatched factors, respectively, are I=I0 ¼
7.4 × 10−6, 2.3 × 10−5, and 1.4 × 10−4 for the H4 EOS
and I=I0 ¼ 7.4 × 10−6, 1.1 × 10−4, and 1.4 × 10−3 for the
APR4 EOS. Here, we define
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FIG. 2 (color online). The gravitational waveforms and the evolution of the gravitational wave phase for four different grid-resolution
runs with the H4 EOS (left three panels) and with the APR4 EOS (right three panels). N indicates the grid resolution, Δx8 ∝ N−1.
The upper panels show the gravitational waveforms for three different grid resolutions. The middle panels show the pure numerical wave
phases and the bottom panels show the results obtained after the stretching of time and phase according to the convergence property (for
N ¼ 40, 48, and 60). The lower plots in middle and bottom panels show the phase disagreement between the purely numerical wave
phase for N ¼ 72 and the lower resolution results. Note that for N ¼ 72, tmrg ¼ 58.43 ðmsÞ for the H4 EOS and tmrg ¼ 61.08 ðmsÞ for
the APR4 EOS.
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Difference between  
the extrapolated and highest         the two extrapolated 

Merger time: ~ 0.3 ms 
Total phase : ~ 1 radian 

Merger time: ~ 0.1 ms 
Total phase : ~ 0.5 radian 

resolved runs. The free parameters, η0 and ϕ, are varied for a
wide range and from 0 to 2π, respectively, to search for the
possible minimum value of I. ti and tf are chosen to be
5 ms and tmrg of the best resolved run, respectively. Here,
the reason for choosing ti ¼ 5ms is that for their early
stage with tret ≲ 5 ms, the numerical waveforms have a
relatively large modulation in amplitude and phase due to
junk radiation.

We find for our present simulation results that for the
second-finest, third-finest, and poorest resolution runs,
η0 ¼ 1.00646, 1.02241, and 1.06000 for the H4 EOS
and η0 ¼ 1.00650, 1.02931, and 1.09118 for the APR4
EOS. The mismatched factors, respectively, are I=I0 ¼
7.4 × 10−6, 2.3 × 10−5, and 1.4 × 10−4 for the H4 EOS
and I=I0 ¼ 7.4 × 10−6, 1.1 × 10−4, and 1.4 × 10−3 for the
APR4 EOS. Here, we define
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FIG. 2 (color online). The gravitational waveforms and the evolution of the gravitational wave phase for four different grid-resolution
runs with the H4 EOS (left three panels) and with the APR4 EOS (right three panels). N indicates the grid resolution, Δx8 ∝ N−1.
The upper panels show the gravitational waveforms for three different grid resolutions. The middle panels show the pure numerical wave
phases and the bottom panels show the results obtained after the stretching of time and phase according to the convergence property (for
N ¼ 40, 48, and 60). The lower plots in middle and bottom panels show the phase disagreement between the purely numerical wave
phase for N ¼ 72 and the lower resolution results. Note that for N ¼ 72, tmrg ¼ 58.43 ðmsÞ for the H4 EOS and tmrg ¼ 61.08 ðmsÞ for
the APR4 EOS.
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Comparison with Effective-one body

velocity induced by the tidal effect to that by other
general relativistic effects such as gravitational-radiation
reaction is larger for the binary of larger radius neutron
stars. The missing tidal effects could give a significant
damage in the current version of the EOB formalism. By
contrast, for the model with the APR4 EOS, the agree-
ment between the extrapolated and EOB waveforms is

quite good even at the last orbit. The total phase error is
smaller than ∼0.7 radian, which is comparable to that in
the error associated with the uncertainty of the extrapo-
lation. This implies that for the binary of small-radius
neutron stars, the current version of the EOB formalism
would be already robust if we accept the phase error of ∼1
radian (see also Ref. [20]).
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FIG. 3 (color online). The extrapolated gravitational waveform and related quantities for the models with the H4 (left) and APR4 EOS
(right). (Top) The extrapolated waveforms for the best resolved (N ¼ 72) and second-best resolved (N ¼ 60) runs are plotted (two
waveforms overlap quite well with each other and we cannot distinguish them in the figure). The waveform by an EOB calculation is
plotted together. The lower panels focus on the late inspiral waveforms. (Middle) The extrapolated gravitational-wave frequency. In the
lower panel of this, the absolute difference between the extrapolated result (with N ¼ 72) and EOB result is shown. (Bottom) The
extrapolated gravitational-wave phase. In the lower panel of this, the difference between the extrapolated result and EOB result is shown.
We aligned the phases of the extrapolated and EOB waveforms at tret ¼ 5 ms.
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velocity induced by the tidal effect to that by other
general relativistic effects such as gravitational-radiation
reaction is larger for the binary of larger radius neutron
stars. The missing tidal effects could give a significant
damage in the current version of the EOB formalism. By
contrast, for the model with the APR4 EOS, the agree-
ment between the extrapolated and EOB waveforms is

quite good even at the last orbit. The total phase error is
smaller than ∼0.7 radian, which is comparable to that in
the error associated with the uncertainty of the extrapo-
lation. This implies that for the binary of small-radius
neutron stars, the current version of the EOB formalism
would be already robust if we accept the phase error of ∼1
radian (see also Ref. [20]).
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FIG. 3 (color online). The extrapolated gravitational waveform and related quantities for the models with the H4 (left) and APR4 EOS
(right). (Top) The extrapolated waveforms for the best resolved (N ¼ 72) and second-best resolved (N ¼ 60) runs are plotted (two
waveforms overlap quite well with each other and we cannot distinguish them in the figure). The waveform by an EOB calculation is
plotted together. The lower panels focus on the late inspiral waveforms. (Middle) The extrapolated gravitational-wave frequency. In the
lower panel of this, the absolute difference between the extrapolated result (with N ¼ 72) and EOB result is shown. (Bottom) The
extrapolated gravitational-wave phase. In the lower panel of this, the difference between the extrapolated result and EOB result is shown.
We aligned the phases of the extrapolated and EOB waveforms at tret ¼ 5 ms.
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Effective one body waveforms 
with tidal (Bernuzzi et al 2015) 
agree very well with NR ones 
up to a last few cycles. 

In a last few cycle, 
   Phase difference: 0.5 ~ 1 rad 
     (Better for Smaller NS) 

Hybridize these waveforms
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FIG. 3. Fourier spectra of the hybrid waveforms for five di↵erent equations of state for a hypothetical e↵ective distance of
De↵ = 100Mpc. The dot-dot curve for the advanced LIGO (referrer to as aLIGO) denotes S

1/2
n . Here, Sn is the one-sided

noise spectrum density for the “Zero Detuning High Power” configuration [52]. The dot-dot-dot curve denotes the Fourier
spectrum for a binary black hole of mass 1.35–1.35M� (plotted only for f � 375Hz). To approximately find SNR, the factor 2
is multiplied in the vertical axis (see Eq. (3.9)).

forms (numerical plus EOB waveforms) together with a

designed noise curve of the advanced LIGO, S1/2
n (for

“Zero Detuning High Power” configuration) [52] and
with the spectrum of a binary-black-hole merger of mass
1.35–1.35M�. Here, Sn(f) denotes the one-sided noise
spectrum density of gravitational-wave detectors. The
numerical waveform for the binary black hole is taken
from SXS Gravitational Waveform Database [55] and we
employ SXS:BBH:001. In this paper, the Fourier trans-
formation is defined by

h̃(f) :=

Z

dt h+(t) exp(�2⇡ift), (3.6)

where h+(t) denotes the plus-mode gravitational wave-
form. For binary neutron stars, the overall shape of h⇥(t)
is approximately the same as that of h+(t) except for a
⇡/2 phase di↵erence, and hence, the Fourier transforma-
tion of the cross mode, h⇥(t), results approximately in
�ih̃(f).

The response of gravitational-wave detectors for a
gravitational-wave event of coalescing binary neutron
stars is written in the form

h̄(t) = H+(✓,', ◆, )h+(t) +H⇥(✓,', ◆, )h⇥(t), (3.7)

where H+ and H⇥ are functions of the source angular
direction denoted by (✓,'), of the inclination angle of
the binary orbital plane with respect to the line of the
sight to the source denoted by ◆, and the polarization
angle denoted by  . Thus, the Fourier transformation of
h̄(t) is written as

h̄(f) ⇡ H(✓,', ◆, )h̃(f), (3.8)

where H = H+ � iH⇥ for which |H|  1. Taking into
account this form, we define the e↵ective distance to the
source by De↵ := D|H|�1 where D is the proper distance
to the source. In the following, we always refer to De↵

(not by D) as “the e↵ective distance to the source”, and
we typically consider an event at De↵ = 200Mpc: This is
equivalent of an event at a distance of 200Mpc with the
optimal orientation and sky location. The reason for this
choice is that statistical studies have predicted typically
⇠ 1 detection per year for De↵ . 200Mpc [53].

Figure 3 clearly shows that the di↵erence in the Fourier
spectra among the waveforms of di↵erent equations of
state becomes appreciable for f & 500Hz. In particular,
for f & 700Hz, the di↵erence is remarkable. This stems
primarily from the di↵erence in the tidal deformability:
For the larger values of ⇤, the spectrum amplitude more
steeply decreases for f & 700Hz because the binary or-
bit is evolved faster. Hence, we confirm that extracting
this di↵erence in the gravitational waveforms detected is
a robust approach for constraining the nuclear equations
of state. Here, we note that (i) the late inspiral wave-
form determines the spectrum only for f . 1 kHz, (ii)
the merger waveform determines the spectrum approxi-
mately for 1 kHz. f . 2 kHz, and (iii) several bumps and
peaks for f & 2 kHz are determined by the post-merger
waveform. It should be also noted that the noise ampli-
tude of the gravitational-wave detectors monotonically
increases for f & 500Hz. This indicates that the equa-
tion of state (tidal deformability) could be determined
primarily by analyzing the spectrum in the late inspiral
and merger waveforms and that the tidal deformability
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is multiplied in the vertical axis (see Eq. (3.9)).

forms (numerical plus EOB waveforms) together with a

designed noise curve of the advanced LIGO, S1/2
n (for

“Zero Detuning High Power” configuration) [52] and
with the spectrum of a binary-black-hole merger of mass
1.35–1.35M�. Here, Sn(f) denotes the one-sided noise
spectrum density of gravitational-wave detectors. The
numerical waveform for the binary black hole is taken
from SXS Gravitational Waveform Database [55] and we
employ SXS:BBH:001. In this paper, the Fourier trans-
formation is defined by

h̃(f) :=

Z

dt h+(t) exp(�2⇡ift), (3.6)

where h+(t) denotes the plus-mode gravitational wave-
form. For binary neutron stars, the overall shape of h⇥(t)
is approximately the same as that of h+(t) except for a
⇡/2 phase di↵erence, and hence, the Fourier transforma-
tion of the cross mode, h⇥(t), results approximately in
�ih̃(f).

The response of gravitational-wave detectors for a
gravitational-wave event of coalescing binary neutron
stars is written in the form

h̄(t) = H+(✓,', ◆, )h+(t) +H⇥(✓,', ◆, )h⇥(t), (3.7)

where H+ and H⇥ are functions of the source angular
direction denoted by (✓,'), of the inclination angle of
the binary orbital plane with respect to the line of the
sight to the source denoted by ◆, and the polarization
angle denoted by  . Thus, the Fourier transformation of
h̄(t) is written as

h̄(f) ⇡ H(✓,', ◆, )h̃(f), (3.8)

where H = H+ � iH⇥ for which |H|  1. Taking into
account this form, we define the e↵ective distance to the
source by De↵ := D|H|�1 where D is the proper distance
to the source. In the following, we always refer to De↵

(not by D) as “the e↵ective distance to the source”, and
we typically consider an event at De↵ = 200Mpc: This is
equivalent of an event at a distance of 200Mpc with the
optimal orientation and sky location. The reason for this
choice is that statistical studies have predicted typically
⇠ 1 detection per year for De↵ . 200Mpc [53].

Figure 3 clearly shows that the di↵erence in the Fourier
spectra among the waveforms of di↵erent equations of
state becomes appreciable for f & 500Hz. In particular,
for f & 700Hz, the di↵erence is remarkable. This stems
primarily from the di↵erence in the tidal deformability:
For the larger values of ⇤, the spectrum amplitude more
steeply decreases for f & 700Hz because the binary or-
bit is evolved faster. Hence, we confirm that extracting
this di↵erence in the gravitational waveforms detected is
a robust approach for constraining the nuclear equations
of state. Here, we note that (i) the late inspiral wave-
form determines the spectrum only for f . 1 kHz, (ii)
the merger waveform determines the spectrum approxi-
mately for 1 kHz. f . 2 kHz, and (iii) several bumps and
peaks for f & 2 kHz are determined by the post-merger
waveform. It should be also noted that the noise ampli-
tude of the gravitational-wave detectors monotonically
increases for f & 500Hz. This indicates that the equa-
tion of state (tidal deformability) could be determined
primarily by analyzing the spectrum in the late inspiral
and merger waveforms and that the tidal deformability
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could be more accurately measured for sti↵er equations
of state of a larger value of ⇤.

We briefly comment on the strength of gravitational
waves found for 2–3.5 kHz as peaks of the Fourier spec-
trum, which are emitted from the massive neutron stars
formed in the post-merger phase (see, e.g., Ref. [43]). To
assess the detectability for them, we estimate the signal-
to-noise ratio defined by

SNR =

"

4

Z ff

fi

|h̃(f)|2

Sn(f)
df

#1/2

. (3.9)

For evaluating the strength of the peaks, we choose fi =
2kHz and ff = 4kHz. It is found that SNR is 0.5–0.9 for
De↵ = 200Mpc: For sti↵er equations of state, this value
is larger (0.5, 0.6, 0.7, 0.9, and 0.9 for APR4, SFHo, DD2,
TMA, and TM1). Since SNR& 5 would be required for
the confirmed detection (due to the presence of the Gaus-
sian and other noises in the detectors, see e.g., Ref. [54]),
this peak will be detected only for a nearby event with
De↵  20–40Mpc for the advanced-LIGO-class detec-
tors. We note that for a gravitational-wave event of
equal-mass binary neutron star with m0 = 2.7M� and
De↵ = 200Mpc, the total signal-to-noise ratio for the en-
tire inspiral phase will be ⇡ 17 (for a choice of fi < 10Hz
and ff > 2 kHz) irrespective of the equations of state em-
ployed. Therefore, the expected SNR for the kHz-peaks
is much lower than the SNR for the inspiral signal for
the advanced-LIGO-class detectors. This motivates us
to focus on the late inspiral phase for extracting the in-
formation of the neutron-star equation of state at least
in the near future.

IV. MEASURABILITY OF THE TIDAL
DEFORMABILITY

Following Ref. [12], we define a measure of the distin-
guishability of two waveforms by

||h1 � h2||2

:= min
�t,��

2

6

4

4

Z ff

fi

�

�

�

h̃1(f)� h̃2(f)ei(2⇡f�t+��)
�

�

�

2

Sn(f)
df

3

7

5

,

(4.1)

where h̃1(f) and h̃2(f) are the Fourier transform of the
waveforms h1(t) and h2(t). fi and ff are carefully chosen
later for the analysis of the measurability.

As shown in Refs. [56], ||h1�h2|| = 1 corresponds to a
1-� error in parameter estimation, and hence, two wave-
forms h1 and h2 are said to be marginally distinguishable
if ||h1�h2|| = 1. Thus, we assess the measurability of the
tidal deformability by calculating ||h1�h2|| for a variety
of two waveforms of di↵erent values of ⇤.

In the calculation of ||h1 � h2||, it is ideal to choose
fi < 10Hz and ff > 4 kHz. Computationally, choos-
ing ff > 4 kHz does not matter whereas choosing the

low value of fi is computationally expensive. Moreover,
the noise amplitude of gravitational-wave detectors usu-
ally steeply increases with the decrease of the frequency
for f < 50Hz toward 10Hz. Hence, practically, we may
choose a value of fi larger than 10Hz. Thus, as a first
step, we calibrate how high value of fi is acceptable using
the Taylor-F2 (TF2) approximant for h̃1 and h̃2. Here,
the amplitude and phase of the TF2 approximant are cal-
culated by using a stationary phase approximation and
the results are written simply in a polynomial form with
respect to (⇡m0f)2/3 [50] (see also Appendix B). In the
present analysis, the tidal e↵ect is incorporated up to the
1PN order as in the TT4 case.
It is found that for fi = 50Hz, the result for ||h1 �

h2|| is not significantly di↵erent from that for fi = 10Hz
whereas for fi = 100Hz, the value of ||h1 � h2|| could be
badly significantly underestimated. (For reference, we
mention that for fi = 50Hz and ff = 2kHz, SNR of
Eq. (3.9) is ⇡ 13 for De↵ = 200.) Thus, in this paper,
we basically employ fi = 50Hz. For ff , we choose 1 kHz
and 2 kHz (i.e., we focus only on the inspiral and merger
waveforms). We will show that the result depends only
weakly on ff as long as it is larger than 1 kHz. As we
already mentioned, the contribution to the SNR from
2 kHz  f  4 kHz is quite minor.

A. Analysis with the hybrid waveforms

Table II lists the values of ||h1�h2|| for all the combina-
tions of the hybrid waveforms assuming De↵ = 200Mpc.
Figure 4 also plots ||h1 � h2|| as a function of �⇤ =
|⇤1 �⇤2|; absolute values in the di↵erence of the dimen-
sionless tidal deformability of two di↵erent equations of
state. These show that for �⇤ & 200 and 500, ||h1 � h2||
is larger than 1 and 2, respectively, for De↵ = 200Mpc
(note that if fi = 10Hz, ||h1 � h2|| would be slightly
larger). This implies that for an event of De↵ = 200Mpc,
two equations of state are marginally distinguishable
by observing an inspiral waveform if �⇤ & 200. For
ff = 2kHz, the values of ||h1 � h2|| are only slightly [by
⇠ 0.2(De↵/200Mpc)�1] larger that those for ff = 1kHz.
Hence, we confirm that the measurability is determined
primarily by the late inspiral waveform, and the contribu-
tion of the merger and post-merger waveforms is minor.
By contrast, the values of ||h1 � h2|| depend strongly on
the choice of fi, as already mentioned. Thus, the measur-
ability of the tidal e↵ect is not only determined by the
late inspiral waveform but also by the relatively early
one.
The neutron-star radius approximately monotonically

increases with ⇤. For the five equations of state employed
in this paper, the relation of 1.35M� neutron stars is
written as

R1.35 = (13.565± 0.076) km

✓

⇤

1000

◆0.16735±0.0094

,

(4.2)
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De↵ = 200Mpc: For sti↵er equations of state, this value
is larger (0.5, 0.6, 0.7, 0.9, and 0.9 for APR4, SFHo, DD2,
TMA, and TM1). Since SNR& 5 would be required for
the confirmed detection (due to the presence of the Gaus-
sian and other noises in the detectors, see e.g., Ref. [54]),
this peak will be detected only for a nearby event with
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tors. We note that for a gravitational-wave event of
equal-mass binary neutron star with m0 = 2.7M� and
De↵ = 200Mpc, the total signal-to-noise ratio for the en-
tire inspiral phase will be ⇡ 17 (for a choice of fi < 10Hz
and ff > 2 kHz) irrespective of the equations of state em-
ployed. Therefore, the expected SNR for the kHz-peaks
is much lower than the SNR for the inspiral signal for
the advanced-LIGO-class detectors. This motivates us
to focus on the late inspiral phase for extracting the in-
formation of the neutron-star equation of state at least
in the near future.
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where h̃1(f) and h̃2(f) are the Fourier transform of the
waveforms h1(t) and h2(t). fi and ff are carefully chosen
later for the analysis of the measurability.

As shown in Refs. [56], ||h1�h2|| = 1 corresponds to a
1-� error in parameter estimation, and hence, two wave-
forms h1 and h2 are said to be marginally distinguishable
if ||h1�h2|| = 1. Thus, we assess the measurability of the
tidal deformability by calculating ||h1�h2|| for a variety
of two waveforms of di↵erent values of ⇤.

In the calculation of ||h1 � h2||, it is ideal to choose
fi < 10Hz and ff > 4 kHz. Computationally, choos-
ing ff > 4 kHz does not matter whereas choosing the

low value of fi is computationally expensive. Moreover,
the noise amplitude of gravitational-wave detectors usu-
ally steeply increases with the decrease of the frequency
for f < 50Hz toward 10Hz. Hence, practically, we may
choose a value of fi larger than 10Hz. Thus, as a first
step, we calibrate how high value of fi is acceptable using
the Taylor-F2 (TF2) approximant for h̃1 and h̃2. Here,
the amplitude and phase of the TF2 approximant are cal-
culated by using a stationary phase approximation and
the results are written simply in a polynomial form with
respect to (⇡m0f)2/3 [50] (see also Appendix B). In the
present analysis, the tidal e↵ect is incorporated up to the
1PN order as in the TT4 case.
It is found that for fi = 50Hz, the result for ||h1 �

h2|| is not significantly di↵erent from that for fi = 10Hz
whereas for fi = 100Hz, the value of ||h1 � h2|| could be
badly significantly underestimated. (For reference, we
mention that for fi = 50Hz and ff = 2kHz, SNR of
Eq. (3.9) is ⇡ 13 for De↵ = 200.) Thus, in this paper,
we basically employ fi = 50Hz. For ff , we choose 1 kHz
and 2 kHz (i.e., we focus only on the inspiral and merger
waveforms). We will show that the result depends only
weakly on ff as long as it is larger than 1 kHz. As we
already mentioned, the contribution to the SNR from
2 kHz  f  4 kHz is quite minor.

A. Analysis with the hybrid waveforms

Table II lists the values of ||h1�h2|| for all the combina-
tions of the hybrid waveforms assuming De↵ = 200Mpc.
Figure 4 also plots ||h1 � h2|| as a function of �⇤ =
|⇤1 �⇤2|; absolute values in the di↵erence of the dimen-
sionless tidal deformability of two di↵erent equations of
state. These show that for �⇤ & 200 and 500, ||h1 � h2||
is larger than 1 and 2, respectively, for De↵ = 200Mpc
(note that if fi = 10Hz, ||h1 � h2|| would be slightly
larger). This implies that for an event of De↵ = 200Mpc,
two equations of state are marginally distinguishable
by observing an inspiral waveform if �⇤ & 200. For
ff = 2kHz, the values of ||h1 � h2|| are only slightly [by
⇠ 0.2(De↵/200Mpc)�1] larger that those for ff = 1kHz.
Hence, we confirm that the measurability is determined
primarily by the late inspiral waveform, and the contribu-
tion of the merger and post-merger waveforms is minor.
By contrast, the values of ||h1 � h2|| depend strongly on
the choice of fi, as already mentioned. Thus, the measur-
ability of the tidal e↵ect is not only determined by the
late inspiral waveform but also by the relatively early
one.
The neutron-star radius approximately monotonically

increases with ⇤. For the five equations of state employed
in this paper, the relation of 1.35M� neutron stars is
written as
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see Lindblom et al 2009 
        Read et al 2013

�⇤rand = |⇤1�⇤2|
||h1�h2||

||h1 � h2|| > 1 Marginally distinguishable
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FIG. 4. ||h1 � h2|| for the hybrid waveforms as a function of �⇤ = |⇤1 �⇤2| with De↵ = 200Mpc (open circles). Left and right
panels show for (50Hz, 1 kHz) and (50Hz, 2 kHz), respectively. The values of ||h1 � h2|| are proportional to 200Mpc/De↵ .
The dashed curve in each plot is a fitting formula in the form ||h1 � h2|| = A(⇤/1000)b where (A, b) = (2.99, 0.655) and (3.07,
0.561) for the left and right panels, respectively. The labels like “APR4-SFHo” show the combination of two equations of state
for each value of �⇤. The crosses denote the results of ||h1 � h2|| for the gravitational waveforms of a binary neutron star and
a binary black hole.

TABLE IV. The same as Table II but between the hybrid and EOB waveforms (upper tables), between the hybrid and hybrid-
TT4 waveforms (middle tables), and between the hybrid and TF2 waveforms (bottom tables). For the left tables, fi = 50Hz
and ff = 1kHz and for the right tables, fi = 50Hz and ff = 2kHz.

0.05–1 kHz APR4 SFHo DD2 TMA TM1

EOB:APR4 0.2 0.3 1.9 2.6 3.1

EOB:SFHo 0.5 0.2 1.7 2.4 3.0

EOB:DD2 2.0 1.8 0.2 1.3 2.2

EOB:TMA 2.8 2.7 1.2 0.3 1.5

EOB:TM1 3.1 3.0 2.0 0.9 0.9

0.05–2 kHz APR4 SFHo DD2 TMA TM1

EOB:APR4 0.3 0.6 2.1 2.7 3.2

EOB:SFHo 0.6 0.3 1.9 2.5 3.0

EOB:DD2 2.2 2.0 0.5 1.5 2.3

EOB:TMA 2.9 2.7 1.4 0.6 1.6

EOB:TM1 3.2 3.1 2.1 0.9 1.1

0.05–1 kHz APR4 SFHo DD2 TMA TM1

hybrid- TT4:APR4 0.2 0.5 2.1 2.7 3.2

hybrid- TT4:SFHo 0.5 0.2 1.9 2.6 3.1

hybrid- TT4:DD2 1.7 1.4 0.4 1.6 2.5

hybrid- TT4:TMA 2.3 2.1 0.7 0.6 1.9

hybrid- TT4:TM1 2.8 2.7 1.9 1.0 0.7

0.05–2 kHz APR4 SFHo DD2 TMA TM1

hybrid-TT4:APR4 0.2 0.8 2.3 2.9 3.3

hybrid-TT4:SFHo 0.8 0.2 2.1 2.7 3.2

hybrid-TT4:DD2 1.9 1.7 0.5 1.8 2.6

hybrid-TT4:TMA 2.4 2.3 1.1 0.7 2.0

hybrid-TT4:TM1 2.9 2.8 1.9 1.3 0.8

0.05–1 kHz APR4 SFHo DD2 TMA TM1

TF2:APR4 0.4 0.6 2.1 2.8 3.3

TF2:SFHo 0.6 0.5 1.8 2.6 3.1

TF2:DD2 1.9 1.7 0.5 1.5 2.4

TF2:TMA 2.7 2.6 1.1 0.6 1.8

TF2:TM1 3.0 2.9 1.8 0.7 1.2

0.05–2 kHz APR4 SFHo DD2 TMA TM1

TF2:APR4 0.5 0.7 2.3 2.9 3.4

TF2:SFHo 0.8 0.5 2.0 2.7 3.2

TF2:DD2 2.2 2.0 0.9 1.7 2.5

TF2:TMA 2.8 2.7 1.2 1.0 1.9

TF2:TM1 3.1 3.0 2.0 0.8 1.4

forwardly. The TF2 approximant that we employ in this
paper is described in Appendix B.

The left three panels of Table IV list the values of
||h1 � h2|| for fi = 50Hz and ff = 1kHz for the com-
binations of the hybrid and other waveforms assuming
De↵ = 200Mpc. The right three panels list for fi = 50Hz

and ff = 2kHz. In the following, we mainly compare the
results for fi = 50Hz and ff = 1kHz observing Tables II
and IV, because the EOB and TF2 spectra, in which the
merger spectrum is not taken into account, are trivially
less accurate for f & 1 kHz.

From the comparison between Tables II and IV, it is
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FIG. 4. ||h1 � h2|| for the hybrid waveforms as a function of �⇤ = |⇤1 �⇤2| with De↵ = 200Mpc (open circles). Left and right
panels show for (50Hz, 1 kHz) and (50Hz, 2 kHz), respectively. The values of ||h1 � h2|| are proportional to 200Mpc/De↵ .
The dashed curve in each plot is a fitting formula in the form ||h1 � h2|| = A(⇤/1000)b where (A, b) = (2.99, 0.655) and (3.07,
0.561) for the left and right panels, respectively. The labels like “APR4-SFHo” show the combination of two equations of state
for each value of �⇤. The crosses denote the results of ||h1 � h2|| for the gravitational waveforms of a binary neutron star and
a binary black hole.

TABLE IV. The same as Table II but between the hybrid and EOB waveforms (upper tables), between the hybrid and hybrid-
TT4 waveforms (middle tables), and between the hybrid and TF2 waveforms (bottom tables). For the left tables, fi = 50Hz
and ff = 1kHz and for the right tables, fi = 50Hz and ff = 2kHz.

0.05–1 kHz APR4 SFHo DD2 TMA TM1

EOB:APR4 0.2 0.3 1.9 2.6 3.1

EOB:SFHo 0.5 0.2 1.7 2.4 3.0

EOB:DD2 2.0 1.8 0.2 1.3 2.2

EOB:TMA 2.8 2.7 1.2 0.3 1.5

EOB:TM1 3.1 3.0 2.0 0.9 0.9

0.05–2 kHz APR4 SFHo DD2 TMA TM1

EOB:APR4 0.3 0.6 2.1 2.7 3.2

EOB:SFHo 0.6 0.3 1.9 2.5 3.0

EOB:DD2 2.2 2.0 0.5 1.5 2.3

EOB:TMA 2.9 2.7 1.4 0.6 1.6

EOB:TM1 3.2 3.1 2.1 0.9 1.1

0.05–1 kHz APR4 SFHo DD2 TMA TM1

hybrid- TT4:APR4 0.2 0.5 2.1 2.7 3.2

hybrid- TT4:SFHo 0.5 0.2 1.9 2.6 3.1

hybrid- TT4:DD2 1.7 1.4 0.4 1.6 2.5

hybrid- TT4:TMA 2.3 2.1 0.7 0.6 1.9

hybrid- TT4:TM1 2.8 2.7 1.9 1.0 0.7

0.05–2 kHz APR4 SFHo DD2 TMA TM1

hybrid-TT4:APR4 0.2 0.8 2.3 2.9 3.3

hybrid-TT4:SFHo 0.8 0.2 2.1 2.7 3.2

hybrid-TT4:DD2 1.9 1.7 0.5 1.8 2.6

hybrid-TT4:TMA 2.4 2.3 1.1 0.7 2.0

hybrid-TT4:TM1 2.9 2.8 1.9 1.3 0.8

0.05–1 kHz APR4 SFHo DD2 TMA TM1

TF2:APR4 0.4 0.6 2.1 2.8 3.3

TF2:SFHo 0.6 0.5 1.8 2.6 3.1

TF2:DD2 1.9 1.7 0.5 1.5 2.4

TF2:TMA 2.7 2.6 1.1 0.6 1.8

TF2:TM1 3.0 2.9 1.8 0.7 1.2

0.05–2 kHz APR4 SFHo DD2 TMA TM1

TF2:APR4 0.5 0.7 2.3 2.9 3.4

TF2:SFHo 0.8 0.5 2.0 2.7 3.2

TF2:DD2 2.2 2.0 0.9 1.7 2.5

TF2:TMA 2.8 2.7 1.2 1.0 1.9

TF2:TM1 3.1 3.0 2.0 0.8 1.4

forwardly. The TF2 approximant that we employ in this
paper is described in Appendix B.

The left three panels of Table IV list the values of
||h1 � h2|| for fi = 50Hz and ff = 1kHz for the com-
binations of the hybrid and other waveforms assuming
De↵ = 200Mpc. The right three panels list for fi = 50Hz

and ff = 2kHz. In the following, we mainly compare the
results for fi = 50Hz and ff = 1kHz observing Tables II
and IV, because the EOB and TF2 spectra, in which the
merger spectrum is not taken into account, are trivially
less accurate for f & 1 kHz.

From the comparison between Tables II and IV, it is

EOB is working quite well for Deff > 200 Mpc

Deff = 200 Mpc



Conclusion
We compute long-term (15 orbit) gravitational waveforms 
with errors of ~0.5 rad. 

Current tidal Effective one body formalism is good to 
describe NS-NS inspirals up to the merger. 
(indistinguishable to NR waveforms for SNR<20) 

  
For a NSNS merger event Deff~200Mpc (SNR~17), 
we can distinguish between BBH and BNS 
                                          NSs with R<12km and R>13 km


