

Probing the Extragalactic Background Light with VERITAS

Elisa Pueschel
University College Dublin
28th Texas Symposium on Relativistic Astrophysics
15 December 2015

The Extragalactic Background Light

- → COB = Cosmic optical background
- → CIB = Cosmic infrared background

→ Light from stars, galaxies, etc

→ Light reprocessed by dust

Imprint from reionization, star formation, galaxy evolution Unresolved sources? Dark matter decay? Exotic physics?

Extragalactic Background Light: Strategy

- → TeV γs interact with EBL γs via pair production
 - \rightarrow VERITAS energy range \rightarrow λ_{EBL} 0.1 40 μm
 - → Quantify attentuation as optical depth along line of sight
 - → More distant, higher energy → more attenuation

TeV γ

EBL Imprint on Blazar Spectra

- → VHE (>100 GeV) emission strongly attenuated by EBL
- → HE (>10 MeV) emission minimally attenuated
 - → Proxy for intrinsic spectrum

Intrinsic spectrum:

$$rac{dN}{dE} \propto E^{-\Gamma}$$
 or

$$\frac{dN}{dE} \propto E^{-\Gamma} \exp\left(-\frac{E}{E_C}\right)$$

or...?

Observed spectrum:

$$\frac{dN}{dE} \propto \left(\frac{dN}{dE_{int}}\right) \exp(-\tau_{\gamma\gamma})$$

VERITAS

- → Four 12m IACTs located in southern AZ
 - → Davies-Cotton design, 499 PMTs
- → Energy range: 100 GeV to > 30 TeV
- → Energy resolution: 15% at 1 TeV
- → Angular resolution: 0.1° at 1 TeV
- → Field of view: 3.5°
- → Peak effective area: 100,000 m²

Sources Used

Strongly detected sources:

1ES 2344+514, z=0.044, 45h

1ES 1959+650, z=0.048, 19h

RGB J0710+591, z=0.125, 101h

H 1426+428, z=0.129, 75h

1ES 0229+200, z=0.14, 112h

1ES 1218+304, z=0.182, 117h

1ES 1011+496, z=0.212, 27h

MS 1221.8+2452, z=0.218, 8h

1ES 0414+009, z=0.287, 80h

PG 1553+113, z=0.49, 93h

Observations taken 2007 - Feb 2015

Building Blocks: Generic EBL Models

- \rightarrow Grid points [λ , EBL intensity] define ensemble of splines/EBL models
- → Require grid points satisfy direct constraints on EBL intensity

- \rightarrow For each EBL model, calculate opacity exp(τ_{YY}) for z & energy
- → Account for EBL evolution

$$n_{EBL} \propto (1+z)^3 \to n_{EBL} \propto (1+z)^{3-f_{evo}}, f_{evo} = 1.2$$

Building Blocks: Source Spectra

EBL model 3

example observed spectrum

 \rightarrow × exp(τ_{yy}) to deabsorb

example deabsorbed spectra

energy [TeV]

Two Methods

Method I

Source spectrum

Method II

Deabsorbed spectra (77440 spectra)

- 1) Fit w. power law
- 2) Fit w. power law + exp. cut-off
- 3) Take best fit

Keep EBL model if:

$$\Gamma > 1.5$$

$$\Gamma > \Gamma_{\text{Fermi}}$$

Keep EBL model if:

$$\chi 2 \leq \chi 2_{min} + 1$$

→ 68% confidence band

based on Mazin 2007

based on Lorentz 2015

Method I Results

- → Combination: retain models that are acceptable for ALL sources
- → Systematic uncertainty: soften fitted spectral index by 10% (propagating uncertainty on energy resolution)

Method II Results

- → Combination: sum individual confidence bands, find mean & RMS
- → Systematic uncertainty: remove sources one by one, find maximum change in confidence band

Comparison to Previous Results

Conclusions.

- New VERITAS constraints on EBL
 - Sources
 - 10 sources, redshifts z=0.044 0.49
 - Add more sources, more data (long-term plan objects)
 - Constraints
 - Two methods
 - Agree well with each other & existing constraints
 - Increase granularity of [λ, EBL intensity] grid
 - Increase granularity of [z, energy] opacity calculation

Thanks for your attention!