The shape of a pulsar radio beam: fan beams, not the nested cones

Jarek Dyks

in collaboration with: B. Rudak, M. Pierbattista, L. Saha

Nicolaus Copernicus Astronomical Center Polish Academy of Sciences Torun Lyne & Manchester 1988: beams are **patchy** (random distribution of radio-bright spots)

Sure they are, however:

How the patches are elongated? Azimuthally? Or in colatitude?

Bifurcations do not survive if beam geometry is conal

Bifurcations do not survive if beam geometry is conal

Bifurcations do not survive if beam geometry is conal

Weak RFM is natural for stream-shaped / fan-beam emitters

Prediction: all / most pulsars, including the normal ones (non-millisecond) may have profiles created by fan beams which point at the dipole axis

Beam mapping for precessing pulsars: J1906+0746

Young pulsar: P = 0.14 s, age = 10⁵ yr $P_{orb} = 4$ hr, $P_{prec} = 165$ yr, $t_{obs} = 4$ yr

Desvignes et al. 2012

Observed beam maps:

red cross: magnetic dipole axis

J1141-6545 Manchester et al. 2010

Well, aren't all these pulsars:

- with notches
- with bifurcated components,
- young,
- precessing,
- and millisecond

just peculiar?

The stream model also works better for normal pulsars

Radius-to-frequency mapping – conal version

Hankins & Rankin 2010

RFM is weaker for the inner pair of components -

RFM is weaker for the inner pair of components -

Radius-to-frequency mapping – stream model version circles = fixed intensity contours at a given nu

Red arrow: Cut angle

Inner streams are cut more orthogonally => smaller RFM

The fixed-nu beams are not expected to be circular:

Fixed-intensity contours at two frequencies are shown for three beam elongtions.

MSPs have more flaring B-field lines => why do they exhibit so weak RFM?

Because the streams flowing along their bent B-field lines more easily produce fan-beams!

Lag of 'core' with respect to the centroid of 'conal' pairs

Core lags the centroid of flanking components

The lag is larger:

- for more peripheric pairs of components
- at a lower frequency.

B0329 + 54 Gangadhara & Gupta 2001

Lag of 'core' with respect to the centroid of 'conal' pairs

Conal interpretation: separate emission rings at different altitudes Outer cone emission Aberration-retardation (AR) shift: Higher = closer to the observer = = detected earlier in the profile Inner cone emission Higher = corotating faster = = aberrated more forward = = observed earlier in the profile Core emission

Gangadhara and Gupta 2001; D&R2004

Lag of 'core' with respect to the centroid of 'conal' pairs

Problems:

Why disparate altitudes despite same nu? Why core from small region of high plasma density?

Might there be any **natural reason** for the smaller shift of inner components?

The **Ptolemaic complexity** disappears when a bunch of streams is used instead of cones

AR shift = $2 r / Rlc = k \theta^2$

θ – angular distance from dipole axis

Theta is smaller for inner streams

=> stronger shift for peripheric components

lower nu at larger r (and theta)

=> shift is stronger at lower nu

Note: Core lag results naturally from the stream geometry

You do not need to put your rings at disparate heights!

PSR J0631+1036 – isn't this an obvious nested cone profile?

Traditional conal model: **No** the profile **does not seem** to have conal origin.

Cone size ratio: $R_{rho} = rho_{in} / rho_{out} = 0.74 - 0.87$ (observed)

ν (GHz) R _F (per cent)	1.0 100	R93 1.0 50	G93 1.4 10	$K94 (P^{-\kappa})$			$K94 (P^{-0.5})$		
				1.4 10	4.75 10	10.55 10	1.4 10	4.75 10	10.55 10
$\rho_{\rm in}$ (°)	4.1	4.3	4.9	5.3	4.5	4.77	4.9	4.4	4.5
$\rho_{\rm out}$ (°)	5.1	5.8	6.3	6.23	5.76	5.48	6.3	5.9	5.5
$R_{ ho}$	0.8	0.74	0.78	0.85	0.78	0.87	0.78	0.75	0.82

Rankin, Gil, Kramer, Mitra and their collaborators (1993 - 1999)

All observers find the same average cone size ratio:

Rrho ~ 0.8

(for slightly different pulsar samples, but for Rankin's assumptions about the core component).

Theoretically supported by the geometry of critical field lines (Wright 2003)

PSR J0631+1036 – a profile that should not have been observed

(according to the conal model)

Win / Wout = 1 / 3 (observed) => beta / rho_in = 0.95!

Sightline path nearly tangent to inner cone => extremely fine tuning to get Rw = 1 / 3

Deep central minimum unexpected: inner boundary of inner cone needs to be squeezed between rho_1 and beta = 0.95*rho_1 => even smaller chance to observe such a profile

One profile with equal peak separations is expected per 330 M+Q type profiles (assuming delta_phi = 6 deg +/- 0.5 deg)

A more reasonable beam model for J0631+1036

Teixeira et al. 2016

Cone size ratio fixed => Ratio of peak-to-peak separation (Rw) depends only on beta

Average cone size ratio R_{rho} is determined based on the conal model => definite prediction for Rw distribution

Intervals of viewing angle that correspond to a fixed interval in Rw (Δ Rw = 0.1)

Except from the peripheric region, $Rw = \sim 0.7$ should vastly dominate in the data

Ratios of widths instead of widths => method sensitive only to beam shape but independent of all parameters that just rescale the beam (period, dipole tilt, frequency, emission altitude)

Marginal dependence on dipole tilt (alpha)

CONCLUSIONS

Fan beam geometry works better in explaining the main nu-dependent phenomena in both the normal and millisecond pulsars (RFM, core lag, lack of RFM in MSPs).

Fan beams provide a better model for the observed Rw statistics.

Fan beams are also able to **explain 'peculiarities'** such as the bifurcated components, double notches and polarisation distortions (see poster by Lab Saha).

Plasma streams (columns) more natural than rings at disparate altitudes.

Several important implications, eg.:

- outer boundary of radio beam not circular => existing estimates of r wrong
- dipole tilt distributions based on circular core shape not valid anymore
- radio pulse may lag the dipole axis phase (not just precede due to AR)

The conal beams may well not exist in pulsars at all.