28th Texas Symposium on Relativistic Astrophysics

December 13-18, 2015 International Conference Centre Geneva

PROGRAMME

WELCOME TO GENEVA

We warmly welcome you to Geneva for the 28th TEXAS Symposium on Relativistic Astrophysics, organized by the Astronomy Department and the Physics Section of the University of Geneva. The Symposium includes both invited and contributed talks and posters.

Following the tradition of past Texas Symposia, the 2015 edition will cover recent developments in the fields related to relativistic theory of gravitation, cosmology, messengers and high-energy phenomena with parallel sessions on relativity, gravitation, dark matter, dark energy, early Universe, cosmic microwave background, neutrinos, magnetic fields, gravitational waves, gamma-ray bursts, black-holes, X-ray binaries, discs and jets, particle acceleration and future challenges and experiments.

We are thrilled by the engagement of the community for the fields covered by the Texas symposia with more than 500 abstracts submitted from 54 countries and are excited to welcome hundreds of astrophysicists and physicists in Geneva, the home town of the LHC, to review remarkable discoveries and prospects, one century after the publication of General Relativity by Albert Einstein.

We hope that you will enjoy the comfort of the venue, the "Centre international de Conférences Genève" and fully benefit from the rich programme that has been prepared for you.

ENJOY A BEAUTIFUL WEEK IN GENEVA!

TABLE OF CONTENTS

Committees	4
Symposium venue	6
Plenary talks	
Parallel sessions	
Scientific program day by day	
Poster list	
Practical information	
Excursions	
General information about Geneva	

COMMITTEES

Scientific Organizing Committee

Ana Achucarro, University of Leiden Felix Aharonian, MPIK Heidelberg & DIAS Dublin Abhay Ashtekar, Penn State University Didier Barret, IRAP Toulouse Markus Böttcher, North-West University Potchefstroom Karsten Danzmann, MPI für Gravitationsphysik Hannover Jose Carlos De Araujo, INPE, S. J. dos Campos Ruth Durrer (co-chair), University of Geneva John Ellis, CERN Geneva Katherine Freese, University of Michigan Werner Hofmann, MPIK Heidelberg Gian Giudice. CERN Geneva Thibault Damour. IHES Paris Francis Halzen, University of Madison Fiona Harrison. Caltech Pasadena Mustapha Ishak, University of Texas in Dallas Philippe Jetzer, University of Zurich Victoria Kaspi. McGill University Montreal Dong Lai, Cornell University Bruno Leibundgut, ESO Garching Abraham (Avy) Loeb, Harvard University Roy Maartens, University of the Western Cape and Porthmouth Thanu Padmanabhan, IUCAA Pune Yoel Rephaeli, University of Tel Aviv

Alexandre Refreigier, ETH Zurich Frank Rieger, MPIK Heidelberg Andrew Melatos, University of Melbourne Vahe Petrosian, Stanford University Remo Ruffini, University of Rome Norbert Schartel, ESA Madrid Joseph Silk, IAP Paris Alexei Starobinsky, Landau Inst. Moscow John Stachel, Boston University Luigi Stella, INAF Rome Tadayuki Takahashi, ISAS Tokyo Grazina Tautvaisiene, University of Vilnius Virginia Trimble, University of California Irvine Roland Walter (co-chair), University of Geneva Shuang-Nan Zhang, IHEP Beijing

Local Organizing Committee

Matteo Balbo Vincent Desjacques (co-chair) Valentino Esposito Etienne Lyard Martin Kunz Teresa Montaruli Elisa Prandini Marc Türler Roland Walter (co-chair) Xin Wu

SYMPOSIUM VENUE

All conference rooms are located at the Centre International de Conférences Genève (CICG).

Centre International de Conférences Genève CICG

Rue de Varembé 17 1211 Geneva 20

Tel. + 41 (0)22 791 91 11

The access is facilitated by excellent public transport services. The CICG is situated only 5 km away from the international airport and from the Cornavin main railway station, downtown.

How to reach the CICG

- From Cornavin main railway station: Tram n°15 (*Palettes*): stop "Nations" Bus n°5 (*Aéroport*): stop "Vermont" Bus n°8 (*OMS*): stop "UIT"
- From the international airport: Bus n°5 (*Thônex-Vallard*): stop "Vermont" Bus n°28 (*Jardin Botanique*): stop "Nations"

Where to park your car?

Parking des Nations, Les Genêts, 1202 Genève (5 min. walking distance to CICG)

CICG situation plan

CICG plan

PLENARY TALKS

General Relativity	
First hundred years of GR: successes, status and prospects	Thanu Padmanabhan (Pune)
Experimental tests of general relativity in binary systems	Michael Kramer (Bonn)
Rattle and shine by compact binaries mergers	Luis Lehner (Waterloo)
Exact Solutions in Astrophysics	Mustapha Ishak (Dallas)
Quantum effects on black holes: evaporation, tunnelling, information leak. Anything observable?	Carlo Rovelli (Marseille)

Cosmology CMB temperature and polarisation Nabila Aghanim (Orsay) CMB spectral distortion Rashid Sunyaev (Moscow) Relativistic effects in large-scale structure Camille Bonvin (CERN) surveys Dark matter detection - an experimental overview Laura Baudis (Zurich) The LHC & the Universe Gian Giudice (CERN) The very early universe: observations to Hiranya Peiris (London) fundamental physics Dark energy David Langlois (Paris)

Beyond electromagnetic messengers Gravitational waves Alessandra Buonanno (Berlin) Space borne gravitational waves Stefano Vitale (Trento) Advanced Virgo project Fulvio Ricci (Rome) Multiwavelength aspects of cosmic neutrinos Francis Halzen (Madison)

Relativity At Work

Black holes and their immediate environment	Andrew Fabian (Cambridge)
Disk and jets	Alexander Tchekhovskoy (Berkeley)
The equation of state of dense matter	Anna Watts (Amsterdam)
Gravity in the strong field regime	Luigi Stella (Rome)
Cosmic rays and their acceleration	Pasquale Blasi (Firenze)
Gamma-ray universe	Jim Hinton (Heidelberg)

PARALLEL SESSIONS

ID	Day	Title	Chair
01	Thu	Numerical relativity	Thomas Baumgarte
02	Mon	Exact solutions, inhomogeneous models and averaging	Mustapha Ishak
03a	Tue	Modifications of gravity	Anne Davis
03b	Wed	u	и
04a	Mon	Dark energy	Martin Kunz
04b	Tue	и	и
05a	Wed	Dark matter	Marco Cirelli
05b	Thu	u	и
06	Mon	Early universe	Daniel Figueroa
07	Mon	Large scale structures	Vincent Desjacques
08	Mon	Cosmic microwave background	Antony Lewis
09	Tue	Cosmic neutrinos	Julien Lesgourgues
10a	Tue	Cosmic magnetic fields: probes	Tina Kahniashvili
10b	Wed	Cosmic magnetic fields: origin, evolution and signatures	и
11a	Wed	Gravitational waves	Chiara Caprini
11b	Thu	и	u
11c	Thu	Gravitational waves: Pulsar timing array	Michael Kramer, Victoria Kaspi
12	Thu	Gravitational lensing	Ludovic Van Waerbeke
13a	Mon	Gamma-ray bursts	Luigi Piro
13b	Tue	u	и
14a	Wed	Disks and jets	Thierry Courvoisier
14b	Thu	u	и
15a	Mon	Binaries: HMXB	Alessandro Papitto
15b	Tue	Binaries: ULX and LMXB	и
15c	Wed	Binaries: Millisecond pulsars	и
16a	Tue	Black holes	Didier Barret
16b	Wed	ű	и
17	Thu	Activity at the galactic center	Denys Malyshev
18a	Mon	Gal. accel. and pulsars: Galactic accelerators	Marco Tavani
18b	Tue	Gal. accel. and pulsars: Pulsars	u
19a	Tue	VHE & CR: Blazars and EBL	Teresa Montaruli
19b	Wed	VHE & CR: VHE observations	ű
19c	Thu	VHE & CR: CR and astrophysical neutrinos	u
20	Thu	Future challenges and experiments	Bruno Leibundgut

SCIENTIFIC PROGRAM DAY BY DAY

The order of the talks within each parallel session is at the discretion of the session chair and subject to change. Please check at www.isdc.unige.ch/texas2015/

	MONDAY, December 14 th
08:30 - 09:00	Registration
Plenary sessi	ions Room 2, Level 0
09:00 - 09:07	Introduction, Ruth Durrer & Roland Walter
09:07 - 09:15	Welcome address by the Vice-Rector of the University of Geneva, Jean-Marc Triscone
09:15 - 09:35	Einstein's Swiss Years, Jan Lacki
09:35 - 10:10	First hundred years of GR: successes, status and prospects, Thanu Padmanabhan
10:10 - 10:45	Relativistic effects in large-scale structure surveys, Camille Bonvin
10:45 - 11:20	Coffee break and poster session (Level 0, Lobby)
11:20 - 11:55	CMB temperature and polarisation anisotropies: a goldmine for cosmology., Nabila Aghanim
11:55 - 12:30	CMB spectral distortions, Rashid Sunyaev
12:30 - 14:00	Lunch break (Level 1, Cafeteria)
Session 2 E. Room 13, lev	xact solutions, inhomogeneous models and averaging el 2
14:00 - 14:21	Modelling inhomogeneous cosmologies with Numerical Relativity, Eloisa Bentivegna
14:21 - 14:42	Solving the Einstein-Maxwell Equations for the Dispersive Propagation of Light during Mixmaster Kasner Epochs and other Anisotropic Early-Universe Models, Brett Bochner
14:42 - 15:03	Backrection of voids in a Friedman background with constant w equation of state, Marco Bruni
15:03 - 15:24	Lense-Thirring precession in strong gravitational fields, Chandrachur Chakraborty
15:24 - 15:45	Inhomogeneous conformally flat models of the universe, Mariusz Dabrowski
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	First-order cosmological perturbations engendered by point-like masses: all scales covered, Maxim Eingorn
16:35 - 16:55	Frames in Quasi-Spherical Szekeres Spacetimes, Charles Hellaby
16:55 - 17:15	On homogeneous and isotropic universe, Mikhail Katanaev
17:15 - 17:35	Covariant Perturbations of the Scalar-Tensor Schwarzschild Black Hole, Geraint Pratten
17:35 - 17:55	Confronting anisotropic cosmological models with real-time cosmology, Wessel Valkenburg

17:55 - 18:45	Discussion session on averaging and backreaction in cosmology, Mustapha Ishak
Session 4 D	ark energy Room 14, level 2
14:00 - 14:27	High redshift BAO from BOSS to eBOSS, Timothée Delubac
14:27 - 14:53	Tracing dark energy with quasars., Justyna Średzińska
14:53 - 15:19	Measuring cosmological parameters with GRBs: status and perspectives, Lorenzo Amati
15:19 - 15:45	The m-z relation for type la supernovae, locally inhomogeneous cosmological models, and the nature of dark matter, Phillip Helbig
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:40	Using Atom Interferometry to Detect Chameleon Dark Energy, Clare Burrage
16:40 - 17:05	Causality in theories with more than one metric, Ignacy Leonard Sawicki
17:05 - 17:29	Dark energy as a fixed point of the Einstein Yang-Mills Higgs Equations, Massimiliano Rinaldi
17:29 - 17:53	Non-local gravity and comparison with observational datasets, Yves Dirian
17:53 - 18:17	Viability of a quintessence model with inverse power law potential as a dark energy candidate, Erick Jonathan Almaraz Aviña
18:17 - 18:20	Constraints on a DE parametrization using BAO and Forecasting for future surveys, Mariana Jaber
18:20 - 18:23	Force sensor for chameleon a candidate for dark energy, Attaallah Almasi
18:23 - 18:26	Exploring the consequences of parameter values in cosmological models with CosmoEJS, an interactive package of cosmology Java simulations, Jacob Moldenhauer
18:26 - 18:29	Testing the dark sector interaction by using the isolated galaxy pairs from SDSS DR10, Hanwool Koo
18:29 - 18:32	The gravitational polarization of the quantum vacuum as a pos- sible solution to the dark energy problem, Dragan Hajdukovic
18:32 - 18:35	Primordial perturbations in a bouncing Universe with quintes- sence, Anna Paula Bacalhau
18:35 - 18:38	Refinements of Jungle Universes, Alicia Simon-Petit
Session 6 E	arly universe Room 16, level -1
14:00 - 14:21	Exotic Rotational Correlations in Emergent Quantum Geometry, Craig Hogan
14:21 - 14:42	Creation of Emergent Universe with Wormholes, Bikash Chandra Paul
14:42 - 15:03	A Cyclic Universe alternatively dominated by matter and antimatter, Dragan Hajdukovic
15:03 - 15:24	3D Quantum Bubble Collisions, Jonathan Braden
15:24 - 15:45	Born-Infeldizing gravity, Lavinia Heisenberg

15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	On stability of electroweak vacuum during inflation, Andrey Shkerin
16:35 - 16:55	A stiff Higgstory of the Universe, Daniel G. Figueroa
16:55 - 17:15	Parametric resonance after hilltop inflation caused by an inhomogeneous inflaton field, Francesco Cefalà
17:15 - 17:35	Preheating after hilltop inflation, Stefano Orani
17:35 - 17:55	The Cosmic Laboratory: Probing Inflation with Galaxy Clustering, Roland de Putter
17:55 - 18:15	The Effective Strength of Gravity and the scale of Inflation, Subodh Patil
18:15 - 18:35	Implications of the primordial power asymmetry for inflation, Christian Byrnes
Session 7 L	arge scale structures Room 17, level -1
14:00 - 14:21	A relativistic approach to large-scale structure, David Wands
14:21 - 14:42	Relativistic effects and primordial non-Gaussianity in the matter density fluctuation, Jaiyul Yoo
14:42 - 15:03	Relativistic effects with cross-correlations, Enea Di Dio
15:03 - 15:24	Probing violations of slow-roll inflation at the largest observable scales with future galaxy surveys, Mario Ballardini
15:24 - 15:45	Tomographic lensing constraints with galaxy clustering, Francesco Montanari
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Cosmological nonlinear density and velocity power spectra, Jai-chan Hwang
16:35 - 16:55	General Relativity and Cosmic Structure Formation, Julian Adamek
16:55 - 17:15	Large Scale Structure with interacting Vacuum: the non-linear regime in the post-Friedman approximation, Marco Bruni
17:15 - 17:35	One-dimensional models of cosmological perturbations: direct integration in the Fourier space, Vitalii Sliusar
17:35 - 17:55	TSPT: Time-Sliced Perturbation Theory for Large Scale Structure, Sergey Sibiryakov
17:55 - 18:15	Precision measurement of the local bias of dark matter halos, Titouan Lazeyras
18:15 - 18:18	Supercluster straightness as a cosmological test, Junsup Shim
Session 8 C	osmic microwave background Room 4, level 0
14:00 - 14:25	The POLARBEAR experiment probing the cosmic microwave background polarization, Davide Poletti
14:25 - 14:45	The Quijote experiment: project overview and first results, Ricardo Génova Santos
14:45 - 15:05	CMB spectral distortions: energy release versus photon injection,

15:05 - 15:25	Cosmology with the Planck all-sky Compton parameter map, Juan Francisco Macias-Perez
15:25 - 15:45	High-resolution SZ cartography of clusters of galaxies with NIKA ath the IRAM 30-m telescope, Frédéric Mayet
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Dark matter decay and cosmic reionization, Isabel Oldengott
16:35 - 16:55	Is there evidence for anisotropy in CMB data?, Daniela Saadeh
16:55 - 17:15	Current constraints and forecasts on the tilt and running of the primordial tensor spectrum, Giovanni Cabass
17:15 - 17:35	Cosmological constraints on the neutron lifetime, Laura Salvati
17:35 - 17:55	UV sensitivity of Higgs inflation, Jacopo Fumagalli
17:55 - 17:58	Uniformity of cosmic microwave background as a non-inflatio- nary geometrical effect, Branislav Vlahovic
Session 13 (Gamma-ray bursts Room 2, level 7&8
14:00 - 14:21	Thermal emission in GRB 101219B, Josefin Larsson
14:21 - 14:42	Fitting gamma-ray burst prompt emission spectra with a model for subphotospheric dissipation, Björn Ahlgren
14:42 - 15:03	Signs of magnetic acceleration and multi-zone emission in GRB 080825C, Elena Moretti
15:03 - 15:24	A new intrinsic intrinsic 3 parameter correlation in Gamma Ray Bursts, Maria Dainotti
15:24 - 15:45	GRB polarization with the POLAR detector., Nicolas Produit
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Using Gamma-Ray Bursts as Cosmological Probes, Rob Preece
16:35 - 16:55	Shedding light on the early Universe with THESEUS, Lorenzo Amati
16:55 - 17:15	An External Shock Origin of GRB 141028A, J. Michael Burgess
17:15 - 17:35	Signs of Blandford & Znajek mechanism in GRB afterglow lightcurves., Antonio Nathanail
17:35 - 17:55	Constraining emission mechanisms in gamma-ray bursts using spectral width, Magnus Axelsson
17:55 - 17:58	Study of GRB light curve decay indices in the afterglow phase, Roberta Del Vecchio
17:58 - 18:01	Observed properties of high redshift Gamma-Ray Bursts, Graziella Pizzichini
18:01 - 18:04	Moving observed Short GRBs both off-axis and into the local Universe, Giulia Stratta
Session 15 I	Binaries Room 3, Level 0
14:00 - 14:26	Multi-wavelength variability of the gamma-ray binary LS I +61 303 along the super-orbital period, Diego Torres
14:26 - 14:52	Interacting pulsar winds in X-ray and gamma-ray binaries, Guillaume Dubus

14:52 - 15:18	The gamma-ray monitoring of newly discovered Be/BH binary system MWC 656, Pere Munar-Adrover
15:18 - 15:45	Making the Heaviest Elemens in the Universe, Friedrich Thielemann
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:40	Swift and the Supergiant Fast X-ray Transient outburst factory, Patrizia Romano
16:40 - 17:05	High-mass X-ray binary systems through the eyes of INTEGRAL, Alexander Lutovinov
17:05 - 17:25	Vela X-1 and sgHMXB: hydro driven hard X-rays, Antonis Manousakis
17:25 - 17:45	Correlation study of spectral parameters of NS-HMXBs with Suzaku, Pragati Pradhan
17:45 - 18:05	Orbital resolved spectroscopy of GX 301-2 with MAXI, Nazma Islam
18:05 - 18:20	Broadband study of X-Per using Suzaku observations, Chandreyee Maitra
18:20 - 18:35	Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700–37, Nazma Islam
18:35 - 18:38	Blowing in the wind : accretion in high mass X-ray binaries, lleyk El Mellah
Session 18	Galactic accelerators and pulsars Room 23, level 0
14:00 - 14:20	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin
14:00 - 14:20 14:20 - 14:45	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 15:45 - 16:15	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby)
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 15:45 - 16:15	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri KominGalactic Science with the Cherenkov Telescope Array, Thierry StolarczykModeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) LeeMultiwavelength observations of gamma-ray loud binaries, Maria ChernyakovaParticle acceleration in Eta Carinae: the expected and unexpected, Matteo BalboCoffee break and poster session (Level 0, Lobby)Pulsar observations with the MAGIC telescopes, Takayuki Saito
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:45 - 16:15 16:15 - 16:35	H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby) Pulsar observations with the MAGIC telescopes, Takayuki Saito The intriguing double torus-jet PWN around PSR J0855-4644, Chandreyee Maitra
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 16:15 - 16:15 16:35 - 16:55 16:55 - 17:15	 H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby) Pulsar observations with the MAGIC telescopes, Takayuki Saito The intriguing double torus-jet PWN around PSR J0855-4644, Chandreyee Maitra A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J1640-465, Joseph D Gelfand
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 16:15 - 16:15 16:35 - 16:55 16:55 - 17:15 17:15 - 17:35	 H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby) Pulsar observations with the MAGIC telescopes, Takayuki Saito The intriguing double torus-jet PWN around PSR J0855-4644, Chandreyee Maitra A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J1640-465, Joseph D Gelfand First-order Fermi acceleration at pulsar wind termination shock., Simone Giacché
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 16:15 - 16:15 16:35 - 16:55 16:55 - 17:15 17:15 - 17:35	 H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby) Pulsar observations with the MAGIC telescopes, Takayuki Saito The intriguing double torus-jet PWN around PSR J0855-4644, Chandreyee Maitra A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J1640-465, Joseph D Gelfand First-order Fermi acceleration at pulsar wind termination shock., Simone Giacché Rapid particle acceleration at perpendicular shocks, John Kirk
14:00 - 14:20 14:20 - 14:45 14:45 - 15:05 15:05 - 15:25 15:25 - 15:45 16:15 - 16:15 16:55 - 17:15 17:15 - 17:35 17:35 - 17:55	 H.E.S.S. Observations of the Large Magellanic Cloud, Nukri Komin Galactic Science with the Cherenkov Telescope Array, Thierry Stolarczyk Modeling Bright Gamma-ray and Radio Emission from Fast Cloud Shocks at Middle-aged SNRs, Shiu Hang (Herman) Lee Multiwavelength observations of gamma-ray loud binaries, Maria Chernyakova Particle acceleration in Eta Carinae: the expected and unexpected, Matteo Balbo Coffee break and poster session (Level 0, Lobby) Pulsar observations with the MAGIC telescopes, Takayuki Saito The intriguing double torus-jet PWN around PSR J0855-4644, Chandreyee Maitra A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J1640-465, Joseph D Gelfand First-order Fermi acceleration at pulsar wind termination shock., Simone Giacché Rapid particle acceleration at perpendicular shocks, John Kirk Kinetic simulations of relativistic harmonic magnetic equilibria, Krzysztof Nalewajko

	TUESDAY, December 15 th
08:30 - 09:00	Registration
Plenary sess	ions Room 2, Level 0
09:00 - 09:35	A unifying description of dark energy, David Langlois
09:35 - 10:10	Dark matter detection - an experimental overview, Laura Baudis
10:10 - 10:45	Towards fundamental physics from cosmological surveys, Hiranya Peiris
10:45 - 11:20	Coffee break and poster session (Level 0, Lobby)
11:20 - 11:55	The equation of state of dense matter, Anna Watts
11:55 - 12:30	Status of the Advanced Virgo project, Fulvio Ricci
12:30 - 14:00	Lunch break (Level 1, Cafeteria)
Session 4 D	Park energy Room 14, Level 2
14:00 - 14:26	Planck 2015 results on Dark Energy and Modified Gravity, Matteo Martinelli
14:26 - 14:53	Tensions Between CMB and Weak Lensing Data Sets when Testing General Relativity, Jason Dossett
14:53 - 15:19	Constraints on induced gravity dark energy models, Mario Ballardini
15:19 - 15:45	Cold dark energy and cosmological parameter estimation, Caroline Heneka
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
Session 3 N	lodifications of gravity Room 14, Level 2
16:15 - 16:35	The radial velocity profile of the filament galaxies in the vicinity of the Virgo cluster as a test of gravity, Jounghun Lee
16:35 - 16:55	A Universal velocity dispersion profile for pressure supported systems: evidence for MONDian gravity across 12 orders of magnitude in mass, Reginaldo Durazo
16:55 - 17:25	Searching for new short-range forces using optically levitated microspheres, David Moore
17:25 - 17:45	The variation of the fine-structure constant from disformal couplings, Jurgen Mifsud
17:45 - 18:10	Lorentz violation in gravity, Diego Blas Temino
18:10 - 18:13	Is the Ni's solution of the Tolman-Oppenheimer-Volkoff problem without the maximum-mass limit applicable to the real neutron stars? A discussion, Lubos Neslusan
18:13 - 18:16	A relativistic metric extension of gravity based in the dynamics and lensing of individual, groups and clusters of galaxies, Sergio Mendoza
18:16 - 18:19	Varying constants entropic cosmology, Hussain Gohar
18:19 - 18:22	The Nexus Graviton, Dark Energy and Dark Matter, Stuart Marongwe
18:22 - 18:25	Kaluza-Klein cosmological model in f(R,T) gravity with Lambda(T), Pradyumn Kumar Sahoo

18:25 - 18:28	A Palatini formalism for MOND in f(chi) gravity, Ernesto Barrientos Rodríguez
18:28 - 18:31	Anisotropic Spherically Symmetric Collapsing Star From Higher Order Derivative Gravity Theory, Hossein Ghaffarnejad
Session 9 C	osmic neutrinos Room 16, Level -1
14:00 - 14:21	Joint Constraints on Neutrino Masses from Cosmology and Particle Physics, Martina Gerbino
14:21 - 14:42	Clustering, lensing, and ISW-RS from the DEMNUni neutrino simulations, Carmelita Carbone
14:42 - 15:03	Simulating the effect of massive neutrinos on large-scale struc- ture, Simeon Bird
15:03 - 15:24	Neutrino masses and cosmology with Lyman-alpha forest power spectrum, Christophe Yeche
15:24 - 15:45	Massive neutrinos and their effect on the large scale structure of the Universe, Francisco Villaescusa-Navarro
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:37	Constraining non-standard neutrino scenarios with Planck 2015, Massimiliano Lattanzi
16:37 - 16:59	Sterile neutrinos with secret interactions, Maria Archidiacono
16:59 - 17:20	Constraining sterile neutrinos with lyman alpha forest, Antonella Garzilli
17:20 - 17:41	A loophole to the electromagnetic cascade theory : Solving the lithium problem with a sterile neutrino., Vivian Poulin
17:41 - 18:02	The effective number of neutrinos: standard and non-standard calculations, Pablo Fernández de Salas
18:02 - 18:22	Higher-order massive neutrino perturbations in large-scale struc- ture, Florian Führer
18:22 - 18:42	Neutrinos beyond the linear regime: a new theoretical approach, Hélène Dupuy
18:42 - 18:45	Decoherence of cosmological massive neutrinos, Daniel Boriero
Session 10	Cosmic magnetic fields Room 13, Level 2
14:00 - 14:25	Cosmic magnetic fields and ways of probing them, Philipp Kronberg
14:25 - 14:45	Galactic magnetic fields, Andrew Fletcher
14:45 - 15:05	Probing the Intergalactic Magnetic Fields by means of high- energy pair halos around extreme blazars, Paolo Da Vela
15:05 - 15:25	Lower limits on the magnetic field strength in the early universe, Reinhard Schlickeiser
15:25 - 15:45	The Plasma Physics of TeV Blazars, Philip Chang
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Constraints on Primordial Magnetic Fields from Planck 2015, Daniela Paoletti

-	
÷	
io	
47	
_	
-	
T	
m	
~	
1	
111	
0	
_	
~	
-	
-	
0	
10	
0)	
100	
-	
_	
~	
-	
_	
~	
2	
B	
B	
Y BY	
Y BY	
AY BY	
AY BY	
DAY BY	
DAY BY	
I DAY BY	
I DAY BY	
M DAY BY	
IM DAY BY	
AM DAY BY	
AM DAY BY	
AM DAY BY	
RAM DAY BY	
BRAM DAY BY	
GRAM DAY BY	
JGRAM DAY BY	
OGRAM DAY BY	
OGRAM DAY BY	
ROGRAM DAY BY	
ROGRAM DAY BY	
PROGRAM DAY BY	
PROGRAM DAY BY	
PROGRAM DAY BY	
C PROGRAM DAY BY	
C PROGRAM DAY BY	
IC PROGRAM DAY BY	
FIC PROGRAM DAY BY	
FIC PROGRAM DAY BY	
IFIC PROGRAM DAY BY	
TIFIC PROGRAM DAY BY	
ITIFIC PROGRAM DAY BY	
NTIFIC PROGRAM DAY BY	
NTIFIC PROGRAM DAY BY	
ENTIFIC PROGRAM DAY BY	
ENTIFIC PROGRAM DAY BY	
IENTIFIC PROGRAM DAY BY	
CIENTIFIC PROGRAM DAY BY	
CIENTIFIC PROGRAM DAY BY	

16:35 - 16:55	Prospects of constraining primordial magnetic fields using their effects on CMB, LSS and ionization history, Kerstin Kunze
16:55 - 17:15	Primordial Magnetism in CMB, Levon Pogosian
17:15 - 17:35	Parity odd CMB power spectrum via helical magnetic field., Hector Javier Hortua
Session 13	Gamma-ray bursts Room 7&8, Level 2
14:00 - 14:21	Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario, Riccardo Ciolfi
14:21 - 14:42	Electromagnetic emission from long-lived binary neutron star merger remnants, Daniel Siegel
14:42 - 15:03	Dynamical mass ejection from black hole-neutron star binaries, Koutarou Kyutoku
15:03 - 15:24	Fast luminous blue transients from newborn black holes, Kazumi Kashiyama
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
Session 15	Binaries Room 3, Level 0
14:00 - 14:26	The ultraluminous pulsar, Matteo Bachetti
14:26 - 14:52	Across the Eddington boundary: examining disc spectra at high accretion rates, Andrew Sutton
14:52 - 15:18	Sub-Eddington accretion in neutron star X-ray binaries, Rudy Wijnands
15:18 - 15:45	NuSTAR and XMM-Newton Observation of SAX J1808.4-3658 during the latest outburst, Tiziana Di Salvo
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Hot Plasma Emissions in the Ultra-compact Binary Pulsar 4U 1626-67, Norbert S. Schulz
16:35 - 16:55	Luminosity dependent change of the emission diagram in the X-ray pulsar 4U 1626-67, Filippos Koliopanos
16:55 - 17:15	Presence of a third body orbiting around XB 1916-053., Rosario
17:15 - 17:35	Missing hard states and regular outbursts: the puzzling case of the BHC 4U 1630–472, Fiamma Capitanio
17:35 - 17:51	Glitches and anti-glitches in accreting pulsars: expected proper- ties and observability, Lorenzo Ducci
17:51 - 18:08	Understanding supernova kicks and black-hole spins in Galactic X-ray binaries, Anastasios Fragkos
18:08 - 18:11	Angular momentum loss by gravitational radiation in x-ray bina- ries with neutron stars, Tu çe lçli
Session 16	Black holes Room 17, Level -1
14:00 - 14:21	XMM-Newton's impact on Relativistic Astrophysics: Black Holes, Norbert Schartel
14:21 - 14:42	Relativistic tidal disruption events: what do we learn from their rate distribution?, Immacolata Donnarumma

14:42 - 15:02	Un-Beamed Tidal Disruption Events at Hard X-Rays, Krzysztof Hryniewicz
15:02 - 15:22	IGR J17361-4441: a possible planetary tidal disruption event in NGC 6388, Melania Del Santo
15:22 - 15:42	Relativistic line reverberation mapping in tidal disruption events, Wenfei Yu
15:42 - 15:45	Tidal disruption events induced by the Kozai-Lidov mechanism, Naoki Seto
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:40	The Athena/X-IFU X-ray view of Hot and Energetic Universe: probing the Black Hole environment, Xavier Barcons
16:40 - 17:00	How accreting black holes may shape their surroundings through AGN feedback, Wako Ishibashi
17:00 - 17:20	Direct formation of supermassive black holes; from mergers of protogalaxies to global relativistic collapse, Lucio Mayer
17:20 - 17:40	Cosmological mass transport on galactic nuclei and the forma- tion of high redshift quasars., Andres Escala
17:40 - 18:00	Does the obscured AGN fraction really depend on luminosity?, Sergey Sazonov
18:00 - 18:20	Mildly obscured active galaxies and the diffuse X-ray back- ground, Valentino Esposito
18:20 - 18:23	Disentangling AGN and Star Formation Contributions in the Central Parsec of NGC 4945, Ingyin Zaw
18:23 - 18:26	An eclipsing binary black hole in MRK 421, Sergio Mendoza
18:26 - 18:29	The high energy spectrum of 3C 273, Valentino Esposito
Session 18	Galactic accelerators and pulsars Room 23, Level 0
14:00 - 14:21	Numerical Models For Superfluid Neutron Stars With Realistic
	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie
14:21 - 14:42	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell
14:21 - 14:42 14:42 - 15:02	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22 15:22 - 15:42	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks A new view on the Lighthouse Nebula, IGR J11014-6103, Lucia Pavan
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22 15:22 - 15:42 15:42 - 15:45	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks A new view on the Lighthouse Nebula, IGR J11014-6103, Lucia Pavan A model for distortions of polarisation angle in radio pulsars, Lab Saha
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22 15:22 - 15:42 15:45 - 16:15	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks A new view on the Lighthouse Nebula, IGR J11014-6103, Lucia Pavan A model for distortions of polarisation angle in radio pulsars, Lab Saha Coffee break and poster session (Level 0, Lobby)
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22 15:22 - 15:42 15:42 - 15:45 15:45 - 16:15	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks A new view on the Lighthouse Nebula, IGR J11014-6103, Lucia Pavan A model for distortions of polarisation angle in radio pulsars, Lab Saha Coffee break and poster session (Level 0, Lobby) Progress on the knowledge of magnetic fields in neutron stars, Norbert Schartel
14:21 - 14:42 14:42 - 15:02 15:02 - 15:22 15:22 - 15:42 15:42 - 15:45 15:45 - 16:15 16:15 - 16:35 16:35 - 16:55	Equation Of State And Application To Pulsar Glitches, Aurélien Sourie Multi-scale modelling of pulsar glitches, Brynmor Haskell The role of general relativity and reconnection in pulsar radiation, Benoit Cerutti The shape of a pulsar radio beam: fan beams, not the nested cones., Jaroslaw Dyks A new view on the Lighthouse Nebula, IGR J11014-6103, Lucia Pavan A model for distortions of polarisation angle in radio pulsars, Lab Saha Coffee break and poster session (Level 0, Lobby) Progress on the knowledge of magnetic fields in neutron stars, Norbert Schartel General-relativistic pulsars magnetospheres, Jérôme Pétri

SCIENTIFIC PROGRAM DAY BY DAY – TUESDAY, DECEMBER 15th

-
÷.
S
-
~
- 555
2
=
<
0
Ň
-
~
1
2
-
S
- LLL
5
~
-
- H.
1.1
~
õ
~
5
~
-
2
4
~
G
õ
2
T
0
0
Z
ш
0
(n)
_

17:15 - 17:35	PICsar: Particle in Cell Pulsar Simulations, Mikhail Belyaev
17:35 - 17:55	Effect of geodetic precession on the evolution of pulsar high- energy pulse profiles as derived with the striped-wind model., Jérôme Pétri
17:55 - 17:58	The Crab pulsar: Examining its profile and deriving high precision X-ray ephemerides, Guillaume Belanger
Session 19	Very high energy and Cosmic rays Room 4, Level 0
14:00 - 14:21	Diffuse emissions from radio through microwaves to gamma rays, Elena Orlando
14:21 - 14:42	Probing the Extragalactic Background Light with VERITAS, Elisa Kay Pueschel
14:42 - 15:03	Broadband characterisation and physical implications from the most extreme X-ray flaring activity of the high-peaked BL Lac Mrk 501, Josefa Becerra Gonzalez
15:03 - 15:24	Very fast TeV gamma-ray variability from the non-aligned AGN IC 310: Insight into Black Hole Lightnings, Pierre Colin
15:24 - 15:45	A bright gamma-ray flare from the blazar B2 1215+30 detected by VERITAS and Fermi-LAT, Floriana Zefi
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Non-thermal particle acceleration in astrophysical shear flows., Frank Rieger
16:35 - 16:55	FACT: Monitoring TeV Blazars with Silicon Photomultipliers, Gareth Hughes
16:55 - 17:15	MWL characterization of the blazar S5 0716+714 by MAGIC during its brightest outburst, Marina Manganaro
17:15 - 17:35	The first detection of the blazar S4 0954+65 at very-high energies with the MAGIC Telescopes during an exceptionally high optical state, Giovanna Pedaletti
17:35 - 17:55	Flat spectrum radio quasars at very high energies: the new detection of PKS 1441+25, Josefa Becerra Gonzalez
17:55 - 18:15	Evidence for quasi-periodic modulation in the gamma-ray blazar PG 1553+113, Antonio Stamerra
18:15 - 18:35	Multi-wavelength observations on the gamma-ray periodic blazar PG1553+113, Gareth Hughes
18:35 - 18:38	The long-term optical study of VHE blazars, Omar Kurtanidze

Public Talk University of Geneva, Rue du Général-Dufour 24, Geneva Auditoire Piaget (U600)

19:30 - 21:00

Einstein's legacy: 100 years of general relativity, **Michael KRAMER**

	WEDNESDAY, December 16 th
08:30 - 09:00	Registration
Plenary sess	ions Room 2, Level 0
09:00 - 09:35	Making waves: modeling gravitational waves from coalescing binary systems, Alessandra Buonanno
09:35 - 10:10	Rattle and shine by compact binaries mergers, Luis Lehner
10:10 - 10:45	Experimental tests of general relativity in binary systems, Michael Kramer
10:45 - 11:20	Coffee break and poster session (Level 0, Lobby)
11:20 - 11:55	Quantum effects on black holes: evaporation, tunnelling, infor- mation leak. Anything observable?, Carlo Rovelli
11:55 - 12:30	The LHC and the Universe, Gian Giudice
12:30 - 14:00	Lunch break (Level 1, Cafeteria)
Session 3 N	lodifications of gravity Room 14, Level 2
14:00 - 14:21	Aspects of infrared non-local modifications of General Relativity, Giulia Cusin
14:21 - 14:42	Non-locality in General Relativity and Quantum Field Theory, Xavier Calmet
14:42 - 15:03	Beyond General Relativity: The Geometric Deformation and New Black Hole Solutions, Jorge Ovalle
15:03 - 15:24	Linearly shielded modifications of gravity, Lucas Lombriser
15:24 - 15:45	Initial conditions for simulations of arbitrary modified gravity, beyond quasi-static approximations, Wessel Valkenburg
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Consistent massive graviton on an arbitrary background, Laura Bernard
16:35 - 16:55	Linear perturbations in massive bigravity: formalism and cosmo- logy, Mariele Motta
16:55 - 17:15	Gravitational waves in a bigravity model: from inflation to present, Pietro Guarato
17:15 - 17:35	Dualities and Symmetries of Galileons, Johannes Noller
17:35 - 17:55	Quasi-scale invariant inflationary attractors, Massimiliano Rinaldi
17:55 - 18:15	Quasi-Static Solutions for Compact Objects in Chameleon Models, Ilia Musco
Session 5 D	ark matter Room 7&8, Level 2
14:00 - 14:25	Analysis update to the 2013 data from the Large Underground Xenon project, Wing To
14:25 - 14:45	Results on light dark matter particles with a low threshold CRESST-II detector, Achim Gütlein
14:45 - 15:05	Update on Dark Matter constraints from CMB anisotropies, Vivian Poulin
15:05 - 15:25	The formation of primordial black hole dark matter, Sam Young

-
ŧ.
G
-
~
÷.
ш
B
₹
2
ш
\overline{O}
\sim
ш.
-
~
a
*
S
ŰĬ.
=
4
iii
-
3
-
5
\boldsymbol{a}
*
С
-
-
ш
-
-
4
0
_
S
~
2
œ
(5
×
O
m
2
0
-
ц.,
z
ž
SCIENT

15:25 - 15:45	Simulations of ultralight axion dark matter halos, Jens Niemeyer
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:40	Indirect searches for dark matter in the gamma-ray sky with the Fermi LAT status and prospects, Johann Cohen-Tanugi
16:40 - 17:05	Dark matter and fundamental physics with the Cherenkov Telescope Array, Emmanuel Moulin
17:05 - 17:30	Dark matter ultracompact minihalos and the small-scale early Universe, Hamish Clark
17:30 - 17:50	Astrophysical backgrounds in antiproton searches for dark matter, Michael Kachelriess
17:50 - 18:10	Cosmic ray positrons and antiprotons: implications for Dark Matter, Mathieu Boudaud
18:10 - 18:30	Dark matter searches with antideuterons, Andrea Vittino
18:30 - 18:33	The LZ Dark Matter detector, Bhawna Gomber
18:33 - 18:36	Axion as a cold dark matter candidate, Hyerim Noh
18:36 - 18:39	Indirect Dark Matter searches with the ASTRI mini-array in the framework of the Cherenkov Telescope Array, Saverio Lombardi
18:39 - 18:42	Quantum vacuum as the cause of the phenomena usually attri- buted to dark matter, Dragan Hajdukovic
18:42 - 18:45	Warm dark matter cosmological structures - from collapse to caustics and cores, Sinziana Paduroiu
Session 10	Cosmic magnetic fields Room 16, Level -1
14:00 - 14:21	Relaxing the limits on inflationary magnetogenesis, Christos Tsagas
14:21 - 14:42	Relativistic chiral magnetohydrodynamics and evolution of cosmological magnetic fields, Oleg Ruchayskiy
14:42 - 15:03	First numerical simulations of the chiral MHD dynamo effect, Jennifer Schober
15:03 - 15:24	Evolution of primordial magnetic fields, Axel Brandenburg
15:24 - 15:45	MHD Turbulence and Particles, Andrey Beresnyak
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Novel Approaches for the Analysis of Extragalactic Magnetic Fields, Andrey Saveliev
16:35 - 16:55	Self-similar magnetic, turbulent and thermal energy evolution in massive galaxy clusters, Francesco Miniati
16:55 - 17:15	The Chiral Magnetic Effect and its Role in Astrophysics and Cosmology, Guenter Sigl
17:15 - 17:35	Galactic magnetic field and uncon-ventional cosmic ray propa- gation, Dario Grasso
	Observing primordial helical magnetic fields? Michael

Session 11	Gravitational waves Room 13, Level 2
14:00 - 14:21	The quest for a stochastic background with LIGO/VIrgo GW detectors, Tania Regimbau
14:21 - 14:42	Cosmic variance in the nanohertz gravitational wave background, Elinore Roebber
14:42 - 15:03	Gravitational Waves from a Dark Sector, Pedro Klaus Schwaller
15:03 - 15:24	Acoustically generated gravitational waves from thermal first order phase transitions, Mark Hindmarsh
15:24 - 15:45	Gravitational waves from a thermal first order phase transition: numerical simulations, David Weir
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Late-time cosmology with eLISA, Nicola Tamanini
16:35 - 16:55	Electromagnetic Emission from Compact Supermassive Black Hole Binaries, Zoltan Haiman
16:55 - 17:15	The fate of Super Massive Black Holes in galaxy mergers, Andres Escala
17:15 - 17:35	The underlying simplicity of precessing black-hole binaries, Mark Hannam
17:35 - 17:55	Accurate Phenomenological Waveform Models for Black Hole Coalescence in the Frequency Domain, Sascha Husa
17:55 - 18:15	Gravitational waveform from binary neutron star mergers: Numerical relativity and Effective-one body, Kenta Hotokezaka
18:15 - 18:35	Gravitational Wave Signals from 3D NeutrinoSimulations of Core- Collapse Supernovae Hydrodynamics, Haakon Andresen
Session 14	Disks & jets Room 23, Level 0
14:00 - 14:22	Highlights on massive winds from AGN, Massimo Cappi
14:22 - 14:42	High Energy flares of FSRQs, Luigi Pacciani
14:42 - 15:02	Relativistic Speeds and Transverse Velocity Structure on 50 kpc Scales in NGC6251, Robert Laing
15:02 - 15:22	The accretion-ejection connection in the Galactic black hole candidate X-ray binary MAXI J1836-194, Thomas Russell
15:22 - 15:42	GRS 1915+105 and its spectral variability from the keV to the MeV band, Marek Nikolajuk
15:42 - 15:45	Coeval observations of a complete sample of flat-spectrum bla- zars with Effelsberg, IRAM 30m, and Planck, Jörg Paul Rachen
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:36	New connection between plasma conditions near black hole event horizons and outflow properties, Karri Koljonen
16:36 - 16:57	Jets and winds from super-critical accreting black holes, Roberto Soria
16:57 - 17:18	Real-Time Evolution Of Relativistic Jets In Microquasars, Pedro Luis Luque-Escamilla

17:18 - 17:39	Black Hole Jets from MRI-Generated Magnetic Fields, Kyle Parfrey
17:39 - 17:59	Stability of relativistic two-component jets, Dimitrios Millas
17:59 - 18:19	Rapid variations of polarisation in X-ray binaries, Dave Russell
18:19 - 18:22	The Blandford-Znajek theory revisited, Luigi Foschini
18:22 - 18:25	Evolution of luminosity-linearsize relation for sources with steep radio spectrum, Alla Miroshnichenko
Session 15	Binaries Room 3, Level 0
14:00 - 14:30	Millisecond pulsars: on their own, with a friend, or even two, Jason Hessels
14:30 - 14:55	THE YOUNG, RELATIVISTIC BINARY PULSAR J1906+0746, Joeri van Leeuwen
14:55 - 15:15	Two new relativistic MSPs from the HTRU-North, Marina Berezina
15:15 - 15:45	Simultaneous X-ray and Radio observations of mode-switching radio pulsars PSR B0943+10 and PSR B1822-09, Wim Hermsen
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:45	Formation of millisecond pulsars and double neutron stars, Thomas Tauris
16:45 - 17:10	Accretion and rotation power in ms pulsars, Alessandro Papitto
17:10 - 17:30	The peculiar X-ray variability of the transitional pulsar IGR J18245-2452, Carlo Ferrigno
17:30 - 17:50	Simulations of the Magnetospheres of Accreting Millisecond Pulsars: Torque Enhancement, Spin Equilibrium, and Jet Power, Kyle Parfrey
17:50 - 18:05	3FGL J1544.6-1125: radio imaging analysis of newest transitional millisecond pulsar, Amruta Jaodand
18:05 - 18:20	Orbitally Modulated High-Energy Emission from Black Widows and Redbacks, Zorawar Wadiasingh
18:20 - 18:35	On the low magnetic fields of millisecond pulsars, Marilyn Cruces
18:35 - 18:38	A Frequencies Shift in Relativistic Binary System (Theoretical Study), Abd El Fady Morcos
18:38 - 18:41	Using millisecond pulsars to calibrate XMM/Newton onboard clock, Marilyn Cruces
18:41 - 18:45	Clues to the evolution of helium WD-WD binaries from the Palomar Transient Factory, John Cannizzo

Se

Session 16	Black holes Room 17, Level -1
14:00 - 14:25	General relativistic precession of orbits around the stellar-mass black hole in H 1743-322, Adam Ingram
14:25 - 14:47	On the Detection of an Extreme Gravitationally Redshifted Fe-line constraining the Rotation of the Super-Massive Black Hole in Mrk 876, Eugenio Bottacini
14:47 - 15:12	The high energy variability of V404 Cygni during the June 2015 outburst, Lorenzo Natalucci
15:12 - 15:33	Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes, George Chartas
15:33 - 15:36	MHD Shocks in Accretion onto a Rotating Black Hole, Masaaki Takahashi
15:36 - 15:39	Accretion of a relativistic kinetic gas into a black hole, Paola Rioseco
15:39 - 15:42	Angular momentum loss by gravitational radiation in binaries with black hole, Dolunay Kocak
15:42 - 15:45	Quasi-periodic oscillations of perturbed tori, Varadarajan Parthasarathy
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Rapid variability as a probe of warped space-time around accre- ting black holes, Magnus Axelsson
16:35 - 16:55	Approximation of relevant elliptical equations in the Schwarzschild metric and some astrophysical applications, Vittorio De Falco
16:55 - 17:15	Relativistic Bondi-Hoyle Accretion onto a Rotating Black-Hole: Density Gradients, Fabio Lora
17:15 - 17:35	Frame dragging, unipolar induction and Kerr black hole magnetospheres, Isao Okamoto
17:35 - 17:38	Gaps in black holes magnetospheres, Ksenia Ptitsyna
17:38 - 17:41	Can Black Holes Be Accelerators of Spinning Massive Particles?, Benjamin Koch
17:41 - 17:44	Comments on the Effect of Frame Dragging, Ismail Özbakır
17:44 - 17:47	Hawking radiation cannot exist if quantum vacuum fluctuations are gravitational dipoles, Dragan Hajdukovic
Session 19	Very high energy and Cosmic rays Room 4, Level 0
14:00 - 14:25	The H.E.S.S. Extragalactic Sky, Jill Chevalier
14:25 - 14:50	MAGIC latest results, Oscar Blanch
14:50 - 15:15	Recent Science Highlights from VERITAS, John Quinn
15:15 - 15:45	Exploring the TeV Universe with HAWC, Robert Lauer
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)

16:15 - 16:40	Extragalactic science with the Cherenkov Telescope Array, Lucie Gerard
16:40 - 17:00	The SST-1M Project of the Cherenkov Telescope Array: Status and Physics Perspectives, Matthieu Heller
17:00 - 17:20	ASTRI SST-2M prototype and ASTRI mini-array data analysis and scientific prospects in the framework of the Cherenkov Telescope Array, Saverio Lombardi
17:20 - 17:45	Multiwavelength Spectral and Polarization Signatures of Shocks in Relativistic Jets, Markus Boettcher
17:45 - 18:10	Time-dependent Pair Halo Emission from Very-High-Energy Gamma-Ray Sources, Foteini Oikonomou

20:30 - 00:00

Symposium dinner

	THURSDAY, December 17 th
08:30 - 09:00	Registration
Plenary sess	ions Room 2, Level 0
09:00 - 09:35	IceCube and the discovery of high-energy cosmic neutrinos, Francis Halzen
09:35 - 10:10	The gamma-ray Universe, Jim Hinton
10:10 - 10:45	Cosmic ray acceleration and transport, Pasquale Blasi
10:45 - 11:20	Coffee break and poster session (Level 0, Lobby)
Plenary sessions International Union of Pure and Applied Physics Room 2, Level 0	
11:20 - 11:40	Lest we forget, Virginia Trimble
11:40 - 11:50	Award ceremony, Virginia Trimble
11:50 - 12:10	Magnetars: the Universe strongest magnets, Nanda Rea
12:10 - 12:30	Towards a unified model for the gamma-ray burst prompt emission & a new luminosity-hardness relation for cosmology, Sylvain Guiriec
12:30 - 14:00	Lunch break (Level 1, Cafeteria)
Session 1 N	lumerical relativity Room 14, Level 2
14:00 - 14:21	Merger of binary neutron stars: Gravitational waves and mass ejection, Masaru Shibata
14:21 - 14:42	Magnetar formation from the merger of binary neutron stars, Bruno Giacomazzo
14:42 - 15:03	Effect of Equation of State on Magnetized Binary Neutron Star Mergers, Takumu Kawamura
15:03 - 15:24	Rotation profile of neutron star merger remnants, Wolfgang Kastaun
15:24 - 15:45	A Hamiltonian approach to relativistic fluid dynamics and binary inspiral, Charalampos Markakis
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	CAFE: A relativistic Magnetohydrodynamics code, Alejandro Cruz Osorio
16:35 - 16:55	Simulating the start of inflation from inhomogeneous initial condi- tions, William East
16:55 - 17:15	Critical Collapse of Radiation Fluids: Deviations from Spherical Symmetry, Thomas Baumgarte
17:15 - 17:35	Evolution of a self-gravitating spherical massless scalar field on compactified constant mean curvature hypersurfaces, Manuel David Morales
17:35 - 17:55	Black hole mimickers, Daniela Perez
17:55 - 18:15	The nature of trapping horizons in collapses forming black holes, Ilia Musco
18:15 - 18:18	Asymptotic evolution of Robinson-Trautman spacetimes, Alberto Saa

Session 5 D	ark matter Room 7&8, Level 2
14:00 - 14:21	Recent Developments on X-ray Signals from Dark Matter Decay in Galaxies and Galaxy Clusters, Jeroen Franse
14:21 - 14:42	Unveiling the self-coupling of dark matter with galaxy clusters, David Richard Harvey
14:42 - 15:03	Multimessenger searches for WIMPs with suppressed interac- tions, Thomas David Jacques
15:03 - 15:24	Non linear evolution of BAO and IR - resummation, Mikhail Ivanov
15:24 - 15:45	Cosmology with the Dark Energy Survey, Adam Amara
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
Session 11	Gravitational waves Room 13, Level 2
14:00 - 14:20	Dynamics of compact binaries at the fourth post-Newtonian approximation, Laura Bernard
14:20 - 14:40	A new instability to black-hole spin precession, Davide Gerosa
14:40 - 15:00	Saturation of the f-mode instability in neutron stars, Pantelis Pnigouras
15:00 - 15:03	Gravitational wave attenuation through interactions with charged particles, Joseph Avenoso
15:03 - 15:06	Search of the primordial gravitational waves with Very Long Baseline Interferometry, Oleg Titov
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:36	Gravitational waves from binary supermassive black holes mis- sing in pulsar observations, Stefan Oslowski
16:36 - 16:57	Status of the European Pulsar Timing Array, Gregory Desvignes
16:57 - 17:19	Search for continuous gravitational wave in EPTA dataset, Antoine Lassus
17:19 - 17:41	Limits on the amplitude of the nanohertz gravitational wave Universe from the European Pulsar Timing Array, Lindley Lentati
17:41 - 18:03	Lessons on massive black hole binaries from pulsar timing arrays, Alberto Sesana
18:03 - 18:25	Constraining the energy scale of cosmic strings with PTAs, Sotiris Sanidas
18:25 - 18:45	Pulsar timing detection of gravitational waves from supermassive black hole binaries in stellar environment, Alexander Rasskazov
Session 12	Gravitational lensing Room 16, Level -1
14:00 - 14:21	How the observational quantities of strong gravitational lens effect depend on BH's mass and spin, Hiromi Saida
14:21 - 14:42	The future for strong gravitational lensing, R. Benton Metcalf
14:42 - 15:03	Search for lensed QSOs in the OGLE survey, Zuzanna Kostrzewa-Rutkowska

- C
_
*
-
~
- Hereiter 1
ш
m
-
_
~
ш
-
C
$\mathbf{\nabla}$
-
-
-
I
0
_
10
U)
the second se
-
_
_
-
~
-
~
-
1
~
0
-
~
-
51
-
r 1
2
Σ
M
AMD
AMD
RAM D
RAMD
GRAM D
GRAM D
GRAM D
DGRAM D
OGRAM D
ROGRAM D
ROGRAM D
PROGRAM D
PROGRAM D
PROGRAM D
PROGRAM D
C PROGRAM D
C PROGRAM D
IC PROGRAM D
FIC PROGRAM D
FIC PROGRAM D
IFIC PROGRAM D
LIFIC PROGRAM D
TIFIC PROGRAM D
ITIFIC PROGRAM D
NTIFIC PROGRAM D
NTIFIC PROGRAM D
ENTIFIC PROGRAM D
ENTIFIC PROGRAM D
IENTIFIC PROGRAM D
CIENTIFIC PROGRAM D
CIENTIFIC PROGRAM D
CIENTIFIC PROGRAM D

15:03 - 15:24	Weak lensing mass map in DECaLS DR1 survey, Huanyuan Shan
15:24 - 15:45	CMB lensing - galaxy cross-correlations, Yuuki Omori
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Where are the baryons?, Dominique Eckert
16:35 - 16:55	A direct measurement of tomographic lensing power spectra from CFHTLenS, Fabian Köhlinger
16:55 - 17:15	Gravitational microlensing as a probe for dark matter, Vitalii Sliusar
17:15 - 17:35	Test of relativistic gravity using the microlensing of broad iron line in quasars, levgen Vovk
17:35 - 17:55	CMB lensing and deflection angles in high precision cosmology, Fanizza Giuseppe
17:55 - 17:58	Gravitational lensing flexion measurements in the Hubble Frontier Fields, Markus Rexroth
17:58 - 18:01	Effects of the second-order vector mode on weak lensing signals, Shohei Saga
18:01 - 18:04	Black Holes, Neutron Stars and White Dwarf Candidates from Microlensing with OGLE-III, Zuzanna Kostrzewa-Rutkowska
18:04 - 18:07	How to use geodetic VLBI to measure relativistic light deflection from extragalactic objects, Oleg Titov
Session 14	Disks & jets Room 23, Level 0
14:00 - 14:20	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä
14:00 - 14:20 14:20 - 14:40	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä Unveiling the parent population of beamed narrow-line Seyfert 1s, Marco Berton
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi Foschini
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi FoschiniThe radio look of hard X-ray AGN, Francesca Panessa
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi FoschiniThe radio look of hard X-ray AGN, Francesca PanessaQuasi-periodic oscillations from relativistic hydrodynamicalslender tori, Bhupendra Mishra
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi FoschiniThe radio look of hard X-ray AGN, Francesca PanessaQuasi-periodic oscillations from relativistic hydrodynamicalslender tori, Bhupendra MishraQuasi-Periodic Oscillations are more than just frequencies,Frederic Vincent
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23 15:23 - 15:26 15:26 - 15:29	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi FoschiniThe radio look of hard X-ray AGN, Francesca PanessaQuasi-periodic oscillations from relativistic hydrodynamicalslender tori, Bhupendra MishraQuasi-Periodic Oscillations are more than just frequencies,Frederic VincentQPOs and Lense-Thirring precession, Rebecca Nealon
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23 15:23 - 15:26 15:26 - 15:29 15:45 - 16:15	Narrow-line Seyfert 1 galaxies - rebels of the AGN family, EmiliaJärveläUnveiling the parent population of beamed narrow-line Seyfert1s, Marco BertonBroad-band properties of flat-spectrum radio-loud narrow-lineSeyfert 1 galaxies, Luigi FoschiniThe radio look of hard X-ray AGN, Francesca PanessaQuasi-periodic oscillations from relativistic hydrodynamicalslender tori, Bhupendra MishraQuasi-Periodic Oscillations are more than just frequencies, Frederic VincentQPOs and Lense-Thirring precession, Rebecca NealonCoffee break and poster session (Level 0, Lobby)
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23 15:23 - 15:26 15:26 - 15:29 15:45 - 16:15 16:15 - 16:36	 Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä Unveiling the parent population of beamed narrow-line Seyfert 1s, Marco Berton Broad-band properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies, Luigi Foschini The radio look of hard X-ray AGN, Francesca Panessa Quasi-periodic oscillations from relativistic hydrodynamical slender tori, Bhupendra Mishra Quasi-Periodic Oscillations are more than just frequencies, Frederic Vincent QPOs and Lense-Thirring precession, Rebecca Nealon Coffee break and poster session (Level 0, Lobby) Resistive GRMHD simulations of accretion disks around Kerr black holes: connecting large and small scales, Matteo Bugli
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23 15:23 - 15:26 15:26 - 15:29 15:45 - 16:15 16:15 - 16:36	 Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä Unveiling the parent population of beamed narrow-line Seyfert 1s, Marco Berton Broad-band properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies, Luigi Foschini The radio look of hard X-ray AGN, Francesca Panessa Quasi-periodic oscillations from relativistic hydrodynamical slender tori, Bhupendra Mishra Quosi-Periodic Oscillations are more than just frequencies, Frederic Vincent QPOs and Lense-Thirring precession, Rebecca Nealon Coffee break and poster session (Level 0, Lobby) Resistive GRMHD simulations of accretion disks around Kerr black holes: connecting large and small scales, Matteo Bugli Three dimensional global General Relativistic Radiative Magnetohydrodynamical simulations to test stability of thin disk around black hole, Bhupendra Mishra
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:20 - 15:23 15:23 - 15:26 15:26 - 15:29 15:45 - 16:15 16:15 - 16:36 16:36 - 16:57	 Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä Unveiling the parent population of beamed narrow-line Seyfert 1s, Marco Berton Broad-band properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies, Luigi Foschini The radio look of hard X-ray AGN, Francesca Panessa Quasi-periodic oscillations from relativistic hydrodynamical slender tori, Bhupendra Mishra Quosi-Periodic Oscillations are more than just frequencies, Frederic Vincent QPOs and Lense-Thirring precession, Rebecca Nealon Coffee break and poster session (Level 0, Lobby) Resistive GRMHD simulations of accretion disks around Kerr black holes: connecting large and small scales, Matteo Bugli Three dimensional global General Relativistic Radiative Magne-tohydrodynamical simulations to test stability of thin disk around black hole, Bhupendra Mishra Accretion disk around a super-Eddington accreting neutron star, Anna Chashkina
14:00 - 14:20 14:20 - 14:40 14:40 - 15:00 15:00 - 15:20 15:23 - 15:26 15:23 - 15:26 15:25 - 16:15 16:15 - 16:36 16:36 - 16:57 16:57 - 17:18	 Narrow-line Seyfert 1 galaxies - rebels of the AGN family, Emilia Järvelä Unveiling the parent population of beamed narrow-line Seyfert 1s, Marco Berton Broad-band properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies, Luigi Foschini The radio look of hard X-ray AGN, Francesca Panessa Quasi-periodic oscillations from relativistic hydrodynamical slender tori, Bhupendra Mishra Quosi-Periodic Oscillations are more than just frequencies, Frederic Vincent QPOs and Lense-Thirring precession, Rebecca Nealon Coffee break and poster session (Level 0, Lobby) Resistive GRMHD simulations of accretion disks around Kerr black holes: connecting large and small scales, Matteo Bugli Three dimensional global General Relativistic Radiative Magne-tohydrodynamical simulations to test stability of thin disk around black hole, Bhupendra Mishra Accretion disk around a super-Eddington accreting neutron star, Anna Chashkina Structure of magnetized transonic accretion disks, Pavel Abolmasov

-	
E	
-	
1.	
œ	
ш	
m	
=	
1	
ш	
0	
ш	
5	
 C 	
2	
2	
S	
£	
5	
Ŧ	
18 A.	
- L	
1	
2	
2	
~	
6	
≻	
4	
õ	
-	
5	
2	
2	
The second secon	
G	
Õ	
~	
0	
\simeq	
цц.,	
5	
4	
ш	
~	
2	
0)	

17:38 - 17:59	Thick tori and flows around rotating boson stars, Zakaria Meliani
17:59 - 18:19	Transient dynamics of vortices in relativistic regions of accretion disks around black holes., Viacheslav Zhuravlev
18:19 - 18:39	Astrophysical Boundary Layers: A New Picture, Mikhail Belyaev
18:39 - 18:42	A curved jet model for the synchrotron emission of the BL Lac object PG 1553+113., Antonio Stamerra
18:42 - 18:45	Spectral Analysis of ULXs in Pairs of Interacting Galaxies M51 and NGC 4485/90 Using Swift-XRT, Lis Sulistiyowati
Session 17	Activity at the galactic center Room 17, Level -1
14:00 - 14:21	Reconstruction of the past history of the center of our Galaxy through X-Ray reflection spectra simulations, Michael Walls
14:21 - 14:42	Examining Accretion Disk Properties of Sgr A* Via Stellar Wind Interactions, Ian Christie
14:42 - 15:03	Imaging a boson star at Sgr A*, Frederic Vincent
15:03 - 15:24	NuSTAR Discovery of Galactic Center Hard X-ray Emission, Kerstin Perez
15:24 - 15:45	Origin of the gamma-ray emission from the Galactic Centre, Denys Malyshev
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Fermi Bubbles as a probes of Galactic halo environment, Dmitriy Chernyshov
16:35 - 16:55	Disrupted globular clusters explain gamma ray excess in the Galactic center, Bence Kocsis
16:55 - 17:15	The Radio Evolution of the Galactic Center Magnetar, Joseph D Gelfand
17:15 - 17:35	Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen, Benjamin Brown
Session 19	Very high energy and Cosmic rays Room 4, Level 0
14:00 - 14:25	Correlated neutrino and photon emission during $\gamma\text{-ray}$ flares from the blazar Mrk 421, Maria Petropoulou
14:25 - 14:45	Diagnose the Sources of IceCube Neutrinos with Fermi Observation, Zhuo Li
14:45 - 15:05	Searches for ultra-high energy neutrinos and photons with the Pierre Auger Observatory, Foteini Oikonomou
15:05 - 15:25	Recent results from the ANTARES deep-sea neutrino telescope, Daniele Vivolo
15:25 - 15:45	Exploring the Ultra High Energy Cosmic Rays with the Pierre Auger Observatory, Sergio Petrera
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	Study of the galactic cosmic ray energy spectrum with the ARGO-YBJ experiment, Antonio Surdo
16:35 - 16:55	The universal model of cosmic ray production, Jörg Paul Rachen

16:55 - 17:15	Theoretical uncertainties in extracting cosmic ray diffusion para- meters: the boron to carbon ratio, Yoann Genolini
17:15 - 17:35	Escape model: CR composition and diffuse gamma-ray and neutrino backgrounds, Michael Kachelriess
17:35 - 17:38	spectrum of primary cosmic ray electrons, Rafik Sedrati
17:38 - 17:41	A Uniformly Selected, All-Sky Optical AGN Catalog for UHECR Correlation, Ingyin Zaw
Session 20	Future challenges and experiments Room 3, Level 0
14:00 - 14:24	The Cherenkov Telescope Array, Michael Daniel
14:24 - 14:43	The e-ASTROGAM mission, Vincent Tatischeff
14:43 - 15:06	Large Area X-ray Proportional Counter (LAXPC) instrument onboard ASTROSAT, J S Yadav
15:06 - 15:25	XIPE the X-ray Imaging Polarimetry Explorer, Paolo Soffitta
15:25 - 15:45	The X-ray Integral Field Unit for the second large class ESA mission Athena, Jan-Willem den Herder
15:45 - 16:15	Coffee break and poster session (Level 0, Lobby)
16:15 - 16:35	The Galactic Center - a unique laboratory for relativity, Franck Gillessen
16:35 - 16:55	Space astrometry with Gaia and relativistic astrophysics, Sergei Klioner
16:55 - 17:15	Relativistic Astrophysics with ALMA, Robert Laing
17:15 - 17:35	The Square Kilometre Array Observatory: Prospects for Relativis- tic Astrophysics, Robert Braun
17:35 - 17:55	The Large European Array for Pulsars: a leap of the EPTA for gravitational wave detection, Kuo Liu
17:55 - 18:15	The MICROSCOPE mission ready to test the Equivalence Principle in space, Joel Bergé
18:15 - 18:25	The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station, Ming Xu
18:25 - 18:35	Project QVADIS: Testing the existence of the gravitational anomalies by the study of trans-Neptunian binaries, Dragan Hajdukovic
18:35 - 18:45	Testing varying speed of light cosmologies in future experiments., Mariusz Dabrowski

	_
	-
	-
	_
	-
	- T
	-
- 1	.
	_
	-
	_
	-
	-
	-
	_
	~
	-
	51
	_
	_
	-
	-
	× 1
	_
	_
	ST .
	_
	_
	-
1	
1	7
	ž
	B
	B
	Y BY I
	Y BY I
	AY BY [
	AY BY D
	DAY BY [
	DAY BY [
	DAY BY [
	DAY BY I
	A DAY BY I
	M DAY BY I
	M DAY BY I
	AM DAY BY I
	AM DAY BY I
	RAM DAY BY I
	RAM DAY BY I
	RAM DAY BY I
	GRAM DAY BY I
	GRAM DAY BY I
	GRAM DAY BY I
	JGRAM DAY BY I
	OGRAM DAY BY I
	OGRAM DAY BY I
	30GRAM DAY BY I
	ROGRAM DAY BY I
	PROGRAM DAY BY I
	PROGRAM DAY BY I
	PROGRAM DAY BY I
	PROGRAM DAY BY I
	C PROGRAM DAY BY I
	C PROGRAM DAY BY I
	IC PROGRAM DAY BY I
	IC PROGRAM DAY BY I
	FIC PROGRAM DAY BY I
	FIC PROGRAM DAY BY I
	IFIC PROGRAM DAY BY I
	FIFIC PROGRAM DAY BY I
	TIFIC PROGRAM DAY BY I
	ITIFIC PROGRAM DAY BY I
	NTIFIC PROGRAM DAY BY I
	INTIFIC PROGRAM DAY BY I
	ENTIFIC PROGRAM DAY BY I
	ENTIFIC PROGRAM DAY BY I
	IENTIFIC PROGRAM DAY BY I
	CIENTIFIC PROGRAM DAY BY I
	CIENTIFIC PROGRAM DAY BY I
	CIENTIFIC PROGRAM DAY BY I

	FRIDAY, December 18 th
08:30 - 09:00	Registration
Plenary sess	ions Room 2, Level 0
09:00 - 09:35	ESA gravitational wave observatory, eLISA and LISA Pathfinder, Stefano Vitale
09:35 - 10:10	Exact solutions in astrophysics, Mustapha Ishak
10:10 - 10:45	Exploring gravity in the strong field regime with high throughput X-ray measurements, Luigi Stella
10:45 - 11:20	Coffee break and poster session (Level 0, Lobby)
11:20 -11:55	Heading into the abyss: X-ray spectral timing of accreting black holes, Andrew Fabian
11:55 - 12:30	Disks and jets, Alexander Tchekhovskoy
12:30 - 14:00	Lunch break (Level 1, Cafeteria)
14:00 - 15:35	Cover: Highlights and conclusions
15:35 - 15:45	Texas 2017 - Cape Town, Markus Boettcher
15:45 - 16:30	Coffee break and farewell (Level 0, Lobby)

		Poster list
Nb	Presenter	Title
1	Bhawna Gomber	The LZ Dark Matter detector
2	Hyerim Noh	Axion as a cold dark matter candidate
3	Saverio Lombardi	Indirect Dark Matter searches with the ASTRI mini-array in the framework of the Cherenkov Telescope Array
4	Dragan Hajdukovic	Quantum vacuum as the cause of the phenomena usually attributed to dark matter
5	Sinziana Paduroiu	Warm dark matter cosmological structures - from collapse to caustics and cores
6	Jörg Paul Rachen	Coeval observations of a complete sample of flat-spectrum blazars with Effelsberg, IRAM 30m, and Planck
7	Luigi Foschini	The Blandford-Znajek theory revisited
8	Alla Miroshnichenko	Evolution of luminosity-linearsize relation for sources with steep radio spectrum
9	Bhupendra Mishra	Quasi-periodic oscillations from relativistic hydrodynamical slender tori
10	Frederic Vincent	Quasi-Periodic Oscillations are more than just frequencies
11	Rebecca Nealon	QPOs and Lense-Thirring precession
12	Antonio Stamerra	A curved jet model for the synchrotron emission of the BL Lac object PG 1553+113.
13	Lis Sulistiyowati	Spectral Analysis of ULXs in Pairs of Interacting Galaxies M51 and NGC 4485/90 Using Swift-XRT
14	Roberta Del Vecchio	Study of GRB light curve decay indices in the afterglow phase
15	Graziella Pizzichini	Observed properties of high redshift Gamma-Ray Bursts
16	Giulia Stratta	Moving observed Short GRBs both off-axis and into the local Universe
17	Achillies Strantzalis	Evidence for electromagnetic black hole spin down in GRB light curves
18	Maria Charisi	Catalog of isolated emission episodes in Gamma- ray bursts from Fermi, Swift and BATSE
19	Nazma Islam	Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37
20	lleyk El Mellah	Blowing in the wind : accretion in high mass X-ray binaries
21	Tugçe Içli	Angular momentum loss by gravitational radiation in x-ray binaries with neutron stars
22	Abd El Fady Morcos	A Frequencies Shift in Relativistic Binary System (Theoretical Study)

23	Marilyn Cruces	Using millisecond pulsars to calibrate XMM/New- ton onboard clock
24	John Cannizzo	Clues to the evolution of helium WD-WD binaries from the Palomar Transient Factory
25	Naoki Seto	Tidal disruption events induced by the Kozai- Lidov mechanism
26	Ingyin Zaw	Disentangling AGN and Star Formation Contributions in the Central Parsec of NGC 4945
27	Sergio Mendoza	An eclipsing binary black hole in MRK 421
28	Valentino Esposito	The high energy spectrum of 3C 273
29	Masaaki Takahashi	MHD Shocks in Accretion onto a Rotating Black Hole
30	Paola Rioseco	Accretion of a relativistic kinetic gas into a black hole
31	Dolunay Kocak	Angular momentum loss by gravitational radiation in binaries with black hole
32	Varadarajan Parthasarathy	Quasi-periodic oscillations of perturbed tori
33	Ksenia Ptitsyna	Gaps in black holes magnetospheres
34	Benjamin Koch	Can Black Holes Be Accelerators of Spinning Massive Particles?
35	Ismail Özbakir	Comments on the Effect of Frame Dragging
36	Dragan Hajdukovic	Hawking radiation cannot exist if quantum vacuum fluctuations are gravitational dipoles
37	Felipe Garrido Goicovic	Formation of discs around super-massive black hole binaries from infalling clouds
38	Maria Charisi	Supermassive black hole binary candidates - Quasars with optical periodicity in the Palomar Transient Factory
39	Branislav Vlahovic	Uniformity of the Cosmic Microwave Background as a non-inflationary geometrical effect
40	Shouhong Wang	Law of Gravity, Structure and Geometry of Black Holes and the Universe
41	Ming Xu	The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station
42	Dragan Hajdukovic	Project QVADIS: Testing the existence of the gravitational anomalies by the study of trans- Neptunian binaries
43	Mariusz Dabrowski	Testing varying speed of light cosmologies in future experiments.
44	Jérôme Pétri	Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties.
45	Lab Saha	A model for distortions of polarisation angle in radio pulsars

16		
40	Guillaume Belanger	The Crab pulsar: Examining its profile and deriving high precision X-ray ephemerides
47	Joseph Avenoso	Gravitational wave attenuation through interactions with charged particles
48	Oleg Titov	Search of the primordial gravitational waves with Very Long Baseline Interferometry
49	Junsup Shim	Supercluster straightness as a cosmological test
50	Fanizza Giuseppe	CMB lensing and deflection angles in high precision cosmology
51	Markus Rexroth	Gravitational lensing flexion measurements in the Hubble Frontier Fields
52	Shohei Saga	Effects of the second-order vector mode on weak lensing signals
53	Zuzanna Kostrzewa-Rut- kowska	Black Holes, Neutron Stars and White Dwarf Candidates from Microlensing with OGLE-III
54	Oleg Titov	How to use geodetic VLBI to measure relativistic light deflection from extragalactic objects
55	Hector Javier Hortua	Parity odd CMB power spectrum via helical magnetic field.
56	Daniel Boriero	Decoherence of cosmological massive neutrinos
57	Alberto Saa	Asymptotic evolution of Robinson-Trautman spacetimes
58	Omar Kurtanidze	The long-term optical study of VHE blazars
59	Rafik Sedrati	spectrum of primary cosmic ray electrons
	· · · · ·	A Uniformly Solooted, All Sky Optical ACN Cata
60	Ingyin Zaw	log for UHECR Correlation
60 61	Ingyin Zaw Erick Jonathan Almaraz Aviña	Viability of a quintessence model with inverse power law potential as a dark energy candidate
60 61 62	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber	Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys
60 61 62 63	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi	Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy
60 61 62 63 64	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi Jacob Moldenhauer	A Unitornity Selected, All-Sky Optical AGN Cata- log for UHECR Correlation Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy Exploring the consequences of parameter values in cosmological models with CosmoEJS, an inte- ractive package of cosmology Java simulations
60 61 62 63 64 65	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi Jacob Moldenhauer Hanwool Koo	A Unitornity Selected, All-Sky Optical AGN Cata- log for UHECR Correlation Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy Exploring the consequences of parameter values in cosmological models with CosmoEJS, an inte- ractive package of cosmology Java simulations Testing the dark sector interaction by using the isolated galaxy pairs from SDSS DR10
 60 61 62 63 64 65 66 	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi Jacob Moldenhauer Hanwool Koo Leonid Marochnik	A Unitornity Selected, All-Sky Optical Adia Catalog for UHECR Correlation Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy Exploring the consequences of parameter values in cosmological models with CosmoEJS, an inte- ractive package of cosmology Java simulations Testing the dark sector interaction by using the isolated galaxy pairs from SDSS DR10 Graviton dominated eras of Universe evolution
60 61 62 63 64 65 65 66 67	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi Jacob Moldenhauer Hanwool Koo Leonid Marochnik Dragan Hajdukovic	 A Unitornity Selected, All-Sky Optical Addividated log for UHECR Correlation Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy Exploring the consequences of parameter values in cosmological models with CosmoEJS, an interactive package of cosmology Java simulations Testing the dark sector interaction by using the isolated galaxy pairs from SDSS DR10 Graviton dominated eras of Universe evolution The gravitational polarization of the quantum vacuum as a possible solution to the dark energy problem
60 61 62 63 64 65 65 66 67 68	Ingyin Zaw Erick Jonathan Almaraz Aviña Mariana Jaber Attaallah Almasi Jacob Moldenhauer Hanwool Koo Leonid Marochnik Dragan Hajdukovic Anna Paula Bacalhau	 A Unitornity Selected, All-Sky Optical Addividated log for UHECR Correlation Viability of a quintessence model with inverse power law potential as a dark energy candidate Constraints on a DE parametrization using BAO and Forecasting for future surveys Force sensor for chameleon a candidate for dark energy Exploring the consequences of parameter values in cosmological models with CosmoEJS, an interactive package of cosmology Java simulations Testing the dark sector interaction by using the isolated galaxy pairs from SDSS DR10 Graviton dominated eras of Universe evolution The gravitational polarization of the quantum vacuum as a possible solution to the dark energy problem Primordial perturbations in a bouncing Universe with quintessence

70	Surajit Chattopadhyay	Consequences of extended holographic Ricci dark energy in chameleon Brans-Dicke cosmology
71	Lubos Neslusan	Is the Ni's solution of the Tolman-Oppenheimer- Volkoff problem without the maximum-mass limit applicable to the real neutron stars? A discussion
72	Sergio Mendoza	A relativistic metric extension of gravity based in the dynamics and lensing of individual, groups and clusters of galaxies
73	Hussain Gohar	Varying constants entropic cosmology
74	Stuart Marongwe	The Nexus Graviton, Dark Energy and Dark Matter
75	Pradyumn Kumar Sahoo	Kaluza-Klein cosmological model in R,T gravity with Lambda(T)
76	Ernesto Barrientos Rodriguez	A Palatini formalism for MOND in chi gravity
77	Hossein Ghaffarnejad	Anisotropic Spherically Symmetric Collapsing Star From Higher Order Derivative Gravity Theory
78	Dnyaneshwar Pawar	Marder's Two-Fluid Dark Energy Cosmological Models In Saez-Ballester Theory of Gravitation

PRACTICAL INFORMATION

CERTIFICATE OF ATTENDANCE

A certificate of attendance will be sent to all registered participants per e-mail after the Symposium.

INVOICES

Invoices are delivered at the registration desk and after the Symposium upon request only (texas2015@ch.kuoni.com) at no charge.

REGISTRATION & ACCOMMODATION DESK

The registration and accommodation desk is open during the following hours:

Sunday 13th 16:00-18:30 at the museum of Natural Sciences Monday 14th 8:30-18:00 Tuesday 15th 8:30-18:00 Wednesday 16th 8:30-18:00 Thursday 17th 8:30-18:00 Friday 18th 8:30-16:00

Registration fee for Participants includes: Admission to the scientific sessions, Symposium documents including: badge, final programme, coffee breaks, welcome drink, access to the exhibitions and poster area.

Registration fee for Participants does not include: Accommodation, lunches, Conference Dinner (reservation required), participation at excursions, travel expenses, personal insurance.

NAME BADGE

Symposium badges must be worn at all times during Symposium activities. The badge is required for admission to sessions and social activities that are included in the registration.

LUNCH

Lunches are not included in the registration fee. The CICG restaurant (located on the 1st floor) will offer several menus options (the cost for a lunch (starter, main dish and desert) is around CHF 20). Sandwiches will also be available. A special Christmas buffet will be available on Friday 18th for CHF 30.

WIFI

Wireless internet will be available in the Symposium centre. Username: Texas – Password: 2015

CONTACT

SYMPOSIUM SECRETARIAT

Kuoni Global Travel Services AG Geneva Business Center

Avenue des Morgines 12 CH-1213 Petit-Lancy Switzerland

Phone: +41 (0)58 702 62 97 E-mail: texas2015@ch.kuoni.com

SOCIAL PROGRAMME

WELCOME COCKTAIL

Sunday, December 13th, 16:00

The Welcome Cocktail will be served in parallel to the participant's registration in the entry hall of the Museum of Natural Sciences. The event is free of charge for the Symposium participants.

Museum of Natural Sciences is located: Route de Malagnou 1, 1208 Geneva

How to reach the Museum: Bus n°1, 5, 8, 25: stop "Museum" / Tram n°12: stop "Villereuse"

SYMPOSIUM DINNER

Wednesday, December 16th, 20:30

The Symposium dinner is held at the Edelweiss Restaurant, with a typical Swiss meal appropriate for the winter nights

Ticket: 65 CHF for registered participants – Booking in advance is required

Place: The Edelweiss Restaurant – Place de la Navigation 2, 1201 Genève

Direction from CICG:

Tram 15 (*Palettes*): from stop "Nations" to stop "Môle"

Walking distance from "Môle" to the Edelweiss Restaurant: 5 to 10 min

EXCURSIONS

VISIT TO CERN

Visits of CERN are organised:

Monday 14th 13:30-17:30 Tuesday 15th 13:30-17:30 Wednesday 16th 13:30-17:30 Thursday 17th 13:30-17:30

Ticket: 10 CHF for registered participants – Booking in advance is required

Transfer by bus directly from and back to the CICG conference venue.

Important Notice: Valid identity card / passport will be required.

GENEVA GUIDED TOUR "RIVE DROITE"

Saturday 19th December 09:00-13:00 (4 hours)

Start this tour with an introduction of the United Nations square. Then enjoy a guided visit the Museum of History of Science and finish the tour in the city centre to discover the Old Town.

Meeting Point: CICG at 9 am

Ticket: 30 CHF for registered participants – Booking in advance is required

EINSTEIN IN BERN EXCURSION

Saturday 19th December – All day (9:00 to approximately 17:00)

Transfer to Bern by coach, you will then enjoy a guided tour of the Einstein Museum. After a lunch break you will visit the Einstein Haus. Then return to Geneva.

Meeting point for departure: CICG at 9 am

Ticket: 120 CHF for registered participants – Booking in advance is required

GENERAL INFORMATION ABOUT GENEVA

ALTITUDE: 374m (1,227ft) above sea level

CLIMATE: Average temperatures: winter 10°C (50°F), summer 25°C (73°F)

CURRENCY: Swiss Franc (CHF or SFr)

Average rate: 1 Euro = CHF 1.08. The exchange rate for the Euro and the Swiss Franc is subject to daily market fluctuations. Conversion rates are available at foreign exchange offices, banks and in newspapers.

DRIVING

In town speed is limited to 50 km/h or 30 km/h in some areas, on national roads beyond city limits 80 km/h, and on motorways 120 km/h. A motorway sticker, "vignette", is compulsory on highways and semi-highways. It is valid for 1 year and available at the price of CHF 40. – at post offices, garages, customs offices and touring club offices (TCS). Wearing seat belts, both in the front and in the back of a vehicle is compulsory.

ELECTRICITY

Voltage 220 Volts – socket converters are available in local shops.

FREE GENEVA TRANSPORT CARD

All visitors staying at a hotel in Geneva can benefit from this personal and non-transferable pass with free of charge.

It is established upon the visitor's check-in, enabling its holder to use the entire public transportation network of Geneva without restriction (bus, train and boat), valid for the entire duration of the stay including the departure day. However the pass is limited to the area of Geneva and is not valid for trips around Switzerland.

GENEVA PASS

This pass allows it's holder to make use of the great diversity of the Geneva touristic offers enjoying preferential fares, free entries and gifts. Valid for 24, 48 or 72 hours it is your "open Sesame" to museums, cruises, visits, tours and many other surprises.

LANGUAGES

There are three official languages in Switzerland: French, German, Italian.

The official language in the western part of Switzerland and therefore also in Geneva is French. Due to its international character English and also German are often spoken in Geneva.

TIPPING

Prices in hotels, restaurants, taxi fares etc. include taxes and service. A tip is therefore not required, but justified for good service.

We thank our generous sponsors

The Tomalla Foundation

FNSNF Swiss National Science Foundation

www.tomalla.ch

GENEVA TOURISM & CONVENTIONS FOUNDATION