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NMCWCG: The Model

The Weyl connection introduces a vector field that provides non-metricity
properties:

DAgu,y - A)\g;u/:
where A, is the Weyl vector field and Dxgp = Vaguy — T3 9pv — 7, Gop-
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NMCWCG: The Model

The Weyl connection introduces a vector field that provides non-metricity
properties:

DAgu,y - A)\g;u/:
where A, is the Weyl vector field and Dxgp = Vaguy — T3 9pv — 7, Gop-

The generalized Ricci tensor is given by:

. 1 1 _
Ruu - R,u,l/ + EAHAV + Eg,u,u (v/\ - A/\)A)\ + F[J.IJ + E (V[J,AIJ + VVA[,L)y

o

1%

where F,,, = 8,A, — 8,A,, is the strength tensor of the Weyl field.
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NMCWCG: The Model

The Weyl connection introduces a vector field that provides non-metricity
properties:

DAgu,y - A)\g;u/:
where A is the Weyl vector field and Dyg.., = Vg — FﬁAgm, - Ffj/\gp,,,.

The generalized Ricci tensor is given by:

. 1 1 _
Ruu - R,u,l/ + EAHAV + Eg,u,u (v/\ - A/\)A)\ + F[J.IJ + E (V[J,AIJ + VVA[,L)y

o

1%

where F,,, = 8,A, — 8,A,, is the strength tensor of the Weyl field.
The scalar curvature is given by:

R=R+3V, A" — gAXA* .
N—_—— ——
R
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NMCWCG: The Model

Non-minimal matter—curvature coupling model, with Weyl connection,
considering action functional:

S= / (sh1(R) + F2(R)L) \/—gd"x,

where f1(R) and f,(R) are generic functions of the scalar curvature.
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NMCWCG: The Model

Non-minimal matter—curvature coupling model, with Weyl connection,
considering action functional:

S:/~(I{f1( +f2 )\/7d4

where f1(R) and f,(R) are generic functions of the scalar curvature.

Varying the action with respect to the vector field, we obtain the constraint-like
equations:

VAO(R) = —~ArO(R),

where ©(R) = F1(R) 4+ F2(R)£ and Fi(R) =

dR'
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NMCWCG: The Model

Non-minimal matter—curvature coupling model, with Weyl connection,
considering action functional:

S:/~(I{f1( +f2 )\/7d4

where f1(R) and f,(R) are generic functions of the scalar curvature.

Varying the action with respect to the vector field, we obtain the constraint-like
equations:

VAO(R) = —~ArO(R),

where O(R) = F1(R) + F2(R)L and Fi(R) = %2,

Varying the action with respect to the metric, we obtain the field equations:

= 1 _
Ruv + Ry ) OR) — 2g,ufi(R) = 2R,
2 2

© Margarida Lima 4



NMCWCG: The Maxwell Equations

Let us consider the electromagnetic Lagrangian density:

£(EM) _ _%F#VF[,LV’

where F,,, = 9,®, — 9,9, is the Faraday tensor and ¢, is the electromagnetic
four-potential.
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NMCWCG: The Maxwell Equations

Let us consider the electromagnetic Lagrangian density:

£(EM) _ _%F#VF[,LV’

where F,,, = 9,®, — 9,9, is the Faraday tensor and ¢, is the electromagnetic
four-potential.

The energy momentum tensor of the electromagnetic field is given by:

(EM
T

" = FLlFe - %gWFaBF“ﬁ.
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NMCWCG: The Maxwell Equations

Let us consider the electromagnetic Lagrangian density:

£(EM) _ _%FMVF/,LV’

where F,,, = 9,®, — 9,9, is the Faraday tensor and ¢, is the electromagnetic
four-potential.

The energy momentum tensor of the electromagnetic field is given by:

(EM
T

N %gWFaBFaﬂ.

The variation with respect to the four-potential leads to the inhomogeneous mod-
ified Maxwell equations:

[ V.. (F(R)F*™) = 0. j
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NMCWCG: static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds? = —a(r)dt? + B(r)dr? + r?(d6? + sin?(0)d¢?),

where «(r) and 3(r) are arbitrary functions of the distance, r.
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NMCWCG: static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds? = —a(r)dt? + B(r)dr? + r2(d6? + sin?(0)de?),

where a(r) and 3(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Ap = (Ao(r), Aq(r), A(r), As(r)) ,

where A(r), withi € {0,1,2, 3},
are arbitrary functions of the
distance.
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NMCWCG: static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds? = —a(r)dt? + B(r)dr? + r2(d6? + sin?(0)de?),

where a(r) and 3(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

AM = (Ag(r),A1(r),A2(r),A3(r)), ﬁ

o considering the
where A,~(r), withi € {O: 1,2, 3}, static configuration

are arbitrary functions of the of the problem
distance.
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NMCWCG: static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds? = —a(r)dt? + B(r)dr? + r2(d6? + sin?(0)de?),

where a(r) and 3(r) are arbitrary functions of the distance, r.

Aw = (0,A(r),0,0),

A general Weyl vector takes the such as
form: A(r) >0, vr.

AM = (Ag(r),A1(r),A2(r),A3(r)), ﬁ

o considering the
where A,~(I’), withi € {O: 1,2, 3}, static configuration

are arbitrary functions of the of the problem
distance.
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NMCWCG: static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds? = —a(r)dt? + B(r)dr? + r2(d6? + sin?(0)de?),

where a(r) and 3(r) are arbitrary functions of the distance, r.

Aw = (0,A(r),0,0),

A general Weyl vector takes the such as
form: A(r) >0, vr.

AM = (Ag(r),A1(r),A2(r),A3(r)), ﬁ

considering the

where A;(r), withi € {0,1,2,3}, static configuration A, = (Ao(r), A(r), 0,0),
are arbitrary functions of the of the problem
distance. such as
Ao(r) #0
and

Ao(r) + (Aa(r) — &/ (r))Ao(r) = 0.
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Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(R + Ry ) Fi(R) - —gm(R) =0.
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Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(R + Ry ) Fi(R) - —gm(R) =0.

Taking the trace of
these equations:

RF1(R) — 2fi(R) =
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Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(R + Ry ) Fi(R) - —gm(R) =0.

Taking the trace of
these equations:

ﬁ
RF:1(R) — 2fi(R) = 0. leads to two

conclusions
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Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(R + Ry ) Fi(R) - —gm(R) =0.

The model needs to be:

By _ B2
Taking the trace of fi(R) =R",

these equations:

— with v some integration constant.
RF:1(R) — 2fi(R) = 0. leads to two

conclusions
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Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(R + Ry ) Fi(R) - —gm(R) =0.

The model needs to be:

By _ B2
Taking the trace of fi(R) =R",

these equations:

— with v some integration constant.
RF:1(R) — 2fi(R) = 0. leads to two

conclusions The scalar curvature needs to be zero:

R=0.
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Schwarzschild-Like BH: A, = (0,A(r),0,0)
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

( )
M 2 3M) r AM /N2
o =1- 2 Rt SM)T o+ B (1Y
w w w w
8 = 140 5)
_ ! N
)
2
A =
(=,
. J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

( )
M 2 3M) r AM /N2
o =1- 2 Rt SM)T o+ B (1Y
w w w w
8 = 140 5)
_ ! N
)
2
A =
(=,
. J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

A
r N
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

4 )
WM 2(w+3M) r AM [ r\2
a)=1-=—+ Chi )7+w+ (*) ;
w w w w
8 = 140 5)
_ - . .
1= e BT < ()
2
A
(f) r+w
L J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

A

f
Close enough to the BH:
ar) 1 - 2
Far enough to the BH:

a(r) 14 2L o
w+4M

M (5)”
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

4 )
WM 2(w+3M) r AM [ r\2
a)=1-=—+ Chi )7+w+ (*) ;
w w w w
8 = 140 5)
_ - . .
1= e BT < ()
2
A
(f) r+w
L J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

A

f
Close enough to the BH:
ar) 1 - 2
Far enough to the BH:

a(r) 14 2L o
w+4M( )2_

w
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

4 )
WM 2(w+3M) r AM [ r\2
a)=1-=—+ Chi )7+w+ (*) ;
w w w w
8 = 140 5)
_ - . .
1= e BT < ()
2
A
(f) r+w
L J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

—

A
~
Close enough to the BH: Ricci Scalar:
~1_ 2M : . o 12(r+w)((AM+w)r—Mw) |
a(r) =1 Event horizon: R=— R IR
Far enough to the BH: m=2M——-
a(r) ~ 1+ w+3M) [ A 4M +w Kretschmann Invariant:
@ w K = 48M? ( r+w )
w+4M 6 6M+w *

(o)

w
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Schwarzschild-Like BH: A, = (0,A(r),0,0)

— 1=100.00
— 1=62.00
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1©=59.00
— 1=45.00
©=30.00

©=20.00

©=10.00
=500

o ot lime)

Geodesic representation of the Schwarzschild-like black hole, consider-
ing w > M, for the parameters w = 104 andM = 1:
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1=1.0980
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=0.9000
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ool § (tme)
3 o0 015 ] 3 0%

Geodesic representation of the Schwarzschild-like black hole, consider-
ing w < M, for the parameters w = 1and M = 102:
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Schwarzschild-Like BH: A,

& Some thermodynamics quantities for a
— petiogo black hole, from the quantum tunneling
— o200 method:

=611

/ =To (1+6Y)7°%;
- =8 (14 64) Y% (3BM+w)(6M+w);
o Cf’”—co <1+6M) =
) tme) (BH)

0 » » “© E) F

Geodesic representation of the Schwarzschild-like black hole, consider-
ing w > M, for the parameters w = 104 andM = 1:

:—(M+w+w).
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©=09000
©=0750
=0600
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ats a0 s oz B3 ax

Geodesic representation of the Schwarzschild-like black hole, consider-
ing w < M, for the parameters w = 1and M = 102:
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Schwarzschild-Like BH: A, = (

— 1=62.00

=611
1©=59.00
— 1=45.00
©=30.00

©=20.00

©=10.00
©=5.00

o (time)
0 » » “© E)

Geodesic representation of the Schwarzschild-like black hole, consider-

ing w > M, for the parameters w = 104 andM = 1:

1=1.0980

Sl — 1=1.0800
10=1.0000
©=09000
©=0750
©=0800

ool § (tme)
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w < M, for the parameters w = 1and M = 102:
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Some thermodynamics quantities for a
black hole, from the quantum tunneling
method:

0(1+6 )2,

M D=8z (146M)" 2/2(3M+w)(6M+w);
(1+6M)7/ S

F‘B”’:— (M+w+ :;Tj)

Some thermodynamics quantities for a
black hole, from the so-called “area ap-
proach”:

T(A)fT 4M+w;
2
§% =4r (aws)

C '=Co (4M+w)2;

(A) _ M(8M+w)
m= 2(4M+w) *




Schwarzschild-Like BH: A,, = (Aq(r), A:(r), 0,0)
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Schwarzschild-Like BH: A,, = (Aq(r), A:(r), 0,0)

e R
2M r 1 /r\2
o =1-T+2, ) -2E)
1
B(r) = 7
2+ () -1
1 2M
2r
A1(r)_r2 402’
_ Y,

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.
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Schwarzschild-Like BH: A,, = (Aq(r), A:(r), 0,0)

e R
2M r 1 /r\2
o =1-T+2, ) -2E)
1
B(r) = 7
2+ () -1
1 2M
2r
A1(r)_r2 402’
_ Y,

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

—

A
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Schwarzschild-Like BH: A,, = (Aq(r), A:(r), 0,0)

e R
2M r 1 /r\2
o =1-T+2, ) -2E)
1
B(r) = 7
2+ () -1
1 2M
2r
A1(r)_r2 402’
_ Y,

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

—

A

Event horizons:

(M) (@)
ry’ =2M and ry’ =2w
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Schwarzschild-Like BH: A,, = (Aq(r), A:(r), 0,0)

.

—

J

where M > 0 is the black hole mass and w > 0 that we can call Weyl's constant.

Event horizons:

(M) (@)
ry’ =2M and ry’ =2w

© Margarida Lima

Ricci Scalar: R = 3(SM).

w2r !

Kretschmann Invariant:

AMw? (47 —2Mr+r?) —r? (44M—2r(1+M?)+Mr?)
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Schwarzschild-Like BH: A, = (Aq(r), A:(r), 0,0)

20 - =320
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Geodesic representation of the Schwarzschild-like black hole, consider-
ing w > M, for the parameters w = 104 and M = 1:

)
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w < M, for the parameters w = TandM = 102:
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Schwarzschild-Like BH: A, = (Aq(r),A:(r), 0,0)

Some thermodynamics quantities for a
,,,,, o black hole, from the quantum tunneling
e method:

=410 T(BH)_ i r3—M(r2+4w2)
T 27 | (r—2M)(r2—4w?)
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Geodesic representation of the Schwarzschild-like black hole, consider-
ing w > M, for the parameters w = 104 and M = 1:
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w < M, for the parameters w = TandM = 102:
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Schwarzschild-Like BH: A, = (Aq(r),A:(r), 0,0)

Some thermodynamics quantities for a
,,,,, o black hole, from the quantum tunneling
e method:

— =429
=410 T(BH)—L r37M(r2+4w2)
=400 —2xr (rizM)(r274wZ)

— =380
=350

Some thermodynamics quantities for a
20 black hole, from the so-called “area ap-

=250 ”.
a0 proach”:
Geodesic representation of the Schwarzschild-like black hole, consider-
ing w > M, for the parameters w = 10% and M = 1: When w < M:
)
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w < M, for the parameters w = TandM = 102:
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Schwarzschild-Like BH: A,
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w > M, for the parameters w = 104 and M = 1:
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Geodesic representation of the Schwarzschild-like black hole, consider-

ing w < M, for the parameters w = TandM = 102:
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Some thermodynamics quantities for a

black hole, from the quantum tunneling

method:
(BH)

T =,

2nr

r3—M(r2+4w2)

—2M)(?—4w?)

Some thermodynamics quantities for a
black hole, from the so-called “area ap-
proach”:

When w < M: When w > M:

(A) GO\ o A + M M\ .
T =To (1) T =Toy; (1= %)
S(A):47TM2' S(A):47rw2'

(4) o A) w2 Me—w
C(V):COzwff\’/:? C(V):CO () 2
A __wiM A_3M-—w
F=e4s, [Fr=E,



Schwarzschild-Like BH: A, =

=350

=320
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100! £ time)

Geodesic represenlanon of lhe Schwarzschlld like b\ack hole consider-

ing w > M, for the parameters w = 10 andM = 1:
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Geodesic representation of the Schwarzschild-| Ilke black hole, consider-

ing w < M, for the parameters w = TandM = 102:
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(Ao(r), A1(r), 0,0)

Some thermodynamics quantities for a
black hole, from the quantum tunneling
method:

T

i r3—M(r2+4w2)
271 | (r—2M)(r?—4w?)
Some thermodynamics quantities for a
black hole, from the so-called “area ap-
proach”:

Whenw < M: When w > M:
Mh (o) TO-T (1),
S(A):47TM2; S(A)—47rw
C$):Co =M. Cv =Co (4 )2 e
FO=wiM FO=M
When w = M:
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Ci;‘) =Co; F* =4



Schwarzschild-Like BH: Cosmological Constant Background

Considering L(A) = —2A, the energy-momentum tensor components are given by

To) = —2Ag,u.
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Schwarzschild-Like BH: Cosmological Constant Background

Considering L(A) = —2A, the energy-momentum tensor components are given by

To) = —2Ag,u.

The field Equation takes the form:

Ruv (F1(R) — 2AF,(R)) —

(fi(R) — 2Afp(R)) = 0.

N =
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Schwarzschild-Like BH: Cosmological Constant Background

Considering L(A) = —2A, the energy-momentum tensor components are given by

To) = —2Ag,u.

The field Equation takes the form:

Ruv (F1(R) — 2AF,(R)) —

(fi(R) — 2Afp(R)) = 0.

N =

Taking the trace, we obtain the
relation:

h(R)~2AF(R) = 7R*+¢,

where v and ¢ are constants.
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Schwarzschild-Like BH: Cosmological Constant Background

Considering L(A) = —2A, the energy-momentum tensor components are given by

To) = —2Ag,u.

The field Equation takes the form:

Ruv (F1(R) — 2AF,(R)) —

(fi(R) — 2Afp(R)) = 0.

N =

Taking the trace, we obtain the

relation:
ﬁ
— B 52 leads to the
fi (R)_ZAfZ(R) =R+E, conclusions

where v and ¢ are constants.

© Margarida Lima 12



Schwarzschild-Like BH: Cosmological Constant Background

Considering L(A) = —2A, the energy-momentum tensor components are given by

To) = —2Ag,u.

The field Equation takes the form:

- - - 1 - -
Ruv (F1(R) - 2/\F2(R)) -3 (f1 (R) — 2Af2(R)) =0.
The scalar curvature needs to be
Zero:
Taking the trace, we obtain the
relation: B—0
ﬁ A
B _ L leads to the The vacuum solutions
fi(R)—2Af(R) = vR°+¢, IR are also solutions when we
consider a cosmological constant
where ~ and ¢ are constants. background: it is a mathematical

reparametrization like
f(R) = f1(R) — 2AfL(R).

© Margarida Lima 12



Reissner—Nordstrgm-Like BH: Cosmological Constant Backgrou

There are no solutions in vacuum, so let’s consider L = £ + £ .
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There are no solutions in vacuum, so let’s consider £ = £

s
g
M 2 2 (w®+3Mw +2Q r o 4aMm 2
12,8 2 )1y o (O
r r (JJ w w w
o 1+6( )
B(r) = ,
5 2(w2+3Mw+202 w
1= 82 4 BESEHENE o A ()7
2
A = =
(==,
\_

where M > 0 is the mass, w > 0 is the Weyl constant and Qis the

dressed/corrected charge.
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There are no solutions in vacuum, so let’s consider £ = £

s
g
M 2 2 (w®+3Mw +2Q r o 4aMm 2
12,8 2 )1y o (O
r r (JJ w w w
o 1+6( )
B(r) = ,
5 2(w2+3Mw+202 w
1= 82 4 BESEHENE o A ()7
2
A = =
(==,
\_

where M > 0 is the mass, w > 0 is the Weyl constant and Qis the

dressed/corrected charge.
~ A
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There are no solutions in vacuum, so let’s consider £ = £

s
g
M 2 2 (w®+3Mw +2Q r o 4aMm 2
12,8 2 )1y o (O
r r (JJ w w w
o 1+6( )
B(r) = ,
5 2(w2+3Mw+202 w
1= 82 4 BESEHENE o A ()7
2
A = =
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where M > 0 is the mass, w > 0 is the Weyl constant and Qis the
dressed/corrected charge.

—

A

The model:
fi(R) = vR? + 2/¢
f2(R) = ¢
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Reissner—Nordstrgm-Like BH: Cosmological Constant Backgrou

There are no solutions in vacuum, so let’s consider L = £ + L
e N
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where M > 0 is the mass, w > 0 is the Weyl constant and Qis the

dressed/corrected charge.

A
~
: R 362 .
_The nlzdel. Scalar Curvature: R = (it 16
fi(R) = yR 2A
1(R) R+ 2R Kretschmann Invariant: K = h() 5.
fa(R) = ¢ r8(r+w)* (6Q2+w(6M+w))
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Conclusion

e Black hole solutions of a non-minimally coupled Weyl connection gravity in
the form of generalized Schwarzschild and Reissner—Nordstrgm solutions:
leads to black hole solutions with non-vanishing Ricci scalar and in the cor-
rect limit we obtain General Relativity results;
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Conclusion

e Black hole solutions of a non-minimally coupled Weyl connection gravity in
the form of generalized Schwarzschild and Reissner—Nordstrgm solutions:
leads to black hole solutions with non-vanishing Ricci scalar and in the cor-
rect limit we obtain General Relativity results;

e Invacuum, the model under study is equivalent to f(R) theories with the Weyl
connection;

e Considering a cosmological constant backgound, it is mathematically equiv-
alent to a reparametrization of vacuum f(R) theories; however, physically,
they are different;

e Our model introduces an extra linear term in r and a corrected cosmological
constant in the solutions for the metric functions for Schwarzschild-like black
holes;

o Reissner—Nordstrgm-like solution can be found with an extra linear terminr
and corrected/dressed charge and cosmological constant in the solution for
the metric functions.
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