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NMCWCG: The Model

The Weyl connection introduces a vector field that provides non-metricity
properties:

Dλgµν = Aλgµν ,

where Aλ is the Weyl vector field and Dλgµν = ∇λgµν − ¯̄Γρµλgρν − ¯̄Γρνλgρµ.

The generalized Ricci tensor is given by:

R̄µν = Rµν +
1
2
AµAν +

1
2
gµν (∇λ − Aλ)Aλ + F̃µν +

1
2
(∇µAν +∇νAµ)︸ ︷︷ ︸

¯̄Rµν

,

where F̃µν = ∂µAν − ∂νAµ is the strength tensor of the Weyl field.
The scalar curvature is given by:

R̄ = R+ 3∇λAλ − 3
2
AλAλ︸ ︷︷ ︸

¯̄R

.
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NMCWCG: The Model

Non-minimal matter–curvature coupling model, with Weyl connection,
considering action functional:

S =

∫ (
κf1(R̄) + f2(R̄)L

)√
−gd4x,

where f1(R̄) and f2(R̄) are generic functions of the scalar curvature.

Varying the action with respect to the vector field, we obtain the constraint-like
equations:

∇λΘ(R̄) = −AλΘ(R̄),

where Θ(R̄) = F1(R̄) + F2(R̄)L and Fi(R̄) = dfi(R̄)
dR̄ , i ∈ {1, 2}.

Varying the action with respect to the metric, we obtain the field equations:(
Rµν + ¯̄R(µν)

)
Θ(R̄)− 1

2
gµνf1(R̄) =

f2(R̄)
2

Tµν .
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NMCWCG: The Maxwell Equations

Let us consider the electromagnetic Lagrangian density:

L
(EM)

= − 1
4
FµνFµν ,

where Fµν = ∂µΦν − ∂νΦµ is the Faraday tensor and Φµ is the electromagnetic
four-potential.

The energy momentum tensor of the electromagnetic field is given by:

T
(EM)

µν = FµαFα
ν − 1

4
gµνFαβFαβ .

The variation with respect to the four-potential leads to the inhomogeneous mod-
ified Maxwell equations:

∇µ(f2(R̄)Fµν) = 0.
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NMCWCG: Static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds2 = −α(r)dt2 + β(r)dr2 + r2(dθ2 + sin2(θ)dϕ2),

where α(r) and β(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Aµ = (A0(r),A1(r),A2(r),A3(r)) ,

where Ai(r), with i ∈ {0, 1, 2, 3},
are arbitrary functions of the

distance.

considering the
static configuration

of the problem

Aµ = (0,A(r),0,0),

such as
A(r) ≥ 0, ∀r.

Aµ = (A0(r),A1(r),0,0),

such as
A0(r) ̸= 0

and
A′

0(r) + (A1(r)− α′(r))A0(r) = 0.

© Margarida Lima 6



NMCWCG: Static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds2 = −α(r)dt2 + β(r)dr2 + r2(dθ2 + sin2(θ)dϕ2),

where α(r) and β(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Aµ = (A0(r),A1(r),A2(r),A3(r)) ,

where Ai(r), with i ∈ {0, 1, 2, 3},
are arbitrary functions of the

distance.

considering the
static configuration

of the problem

Aµ = (0,A(r),0,0),

such as
A(r) ≥ 0, ∀r.

Aµ = (A0(r),A1(r),0,0),

such as
A0(r) ̸= 0

and
A′

0(r) + (A1(r)− α′(r))A0(r) = 0.

© Margarida Lima 6



NMCWCG: Static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds2 = −α(r)dt2 + β(r)dr2 + r2(dθ2 + sin2(θ)dϕ2),

where α(r) and β(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Aµ = (A0(r),A1(r),A2(r),A3(r)) ,

where Ai(r), with i ∈ {0, 1, 2, 3},
are arbitrary functions of the

distance.

considering the
static configuration

of the problem

Aµ = (0,A(r),0,0),

such as
A(r) ≥ 0, ∀r.

Aµ = (A0(r),A1(r),0,0),

such as
A0(r) ̸= 0

and
A′

0(r) + (A1(r)− α′(r))A0(r) = 0.

© Margarida Lima 6



NMCWCG: Static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds2 = −α(r)dt2 + β(r)dr2 + r2(dθ2 + sin2(θ)dϕ2),

where α(r) and β(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Aµ = (A0(r),A1(r),A2(r),A3(r)) ,

where Ai(r), with i ∈ {0, 1, 2, 3},
are arbitrary functions of the

distance.

considering the
static configuration

of the problem

Aµ = (0,A(r),0,0),

such as
A(r) ≥ 0, ∀r.

Aµ = (A0(r),A1(r),0,0),

such as
A0(r) ̸= 0

and
A′

0(r) + (A1(r)− α′(r))A0(r) = 0.

© Margarida Lima 6



NMCWCG: Static Spherically Symmetric Ansatz

Static line element in spherical coordinates:

ds2 = −α(r)dt2 + β(r)dr2 + r2(dθ2 + sin2(θ)dϕ2),

where α(r) and β(r) are arbitrary functions of the distance, r.

A general Weyl vector takes the
form:

Aµ = (A0(r),A1(r),A2(r),A3(r)) ,

where Ai(r), with i ∈ {0, 1, 2, 3},
are arbitrary functions of the

distance.

considering the
static configuration

of the problem

Aµ = (0,A(r),0,0),

such as
A(r) ≥ 0, ∀r.

Aµ = (A0(r),A1(r),0,0),

such as
A0(r) ̸= 0

and
A′

0(r) + (A1(r)− α′(r))A0(r) = 0.

© Margarida Lima 6



Schwarzschild-Like BH: Vacuum Solutions

In the vacuum case, the field Equations take the form of a pure f(R) gravity with
the Weyl connection:

(
Rµν + ¯̄R(µν)

)
F1(R̄)−

1
2
gµν f1(R̄) = 0.

Taking the trace of
these equations:

R̄F1(R̄)− 2f1(R̄) = 0. leads to two
conclusions

The model needs to be:

f1(R̄) = γR̄2,

with γ some integration constant.

The scalar curvature needs to be zero:

R̄ = 0.
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Schwarzschild-Like BH: Aµ = (0,A(r),0,0)

α(r) = 1− 2M
r

+
2(ω + 3M)

ω

r
ω

+
ω + 4M

ω

( r
ω

)2
,

β(r) =
1+ 6

(M
ω

)
1− 2M

r + 2(ω+3M)
ω

r
ω
+ ω+4M

ω

( r
ω

)2 ,
A(r) = 2

r + ω
,

where M > 0 is the black hole mass and ω > 0 that we can call Weyl’s constant.

Close enough to the BH:
α(r) ≈ 1− 2M

r ;

Far enough to the BH:
α(r) ≈ 1+ 2(ω+3M)

ω
r
ω
+

ω+4M
ω

( r
ω

)2.
Event horizon:

rH = 2M ω

4M+ ω

Ricci Scalar:
R=− 12(r+ω)((4M+ω)r−Mω)

ω2(6M+ω)r2 ;

Kretschmann Invariant:
K = 48M2

r6
( r+ω

6M+ω
.
)2
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Schwarzschild-Like BH: Aµ = (0,A(r),0,0)

Geodesic representation of the Schwarzschild-like black hole, consider-
ing ω ≫ M, for the parameters ω = 104 and M = 1:

Geodesic representation of the Schwarzschild-like black hole, consider-
ing ω ≪ M, for the parameters ω = 1 and M = 102:

Some thermodynamics quantities for a
black hole, from the quantum tunneling
method:

T
(BH)

=T0
(
1+ 6M

ω

)−3/2
;

S
(BH)

=8π
9

(
1+ 6M

ω

)−3/2
(3M+ω)(6M+ω);

C
(BH)

V =C0
(
1+ 6M

ω

)−3/2 6M+ω
ω−3M ;

F
(BH)

=−
(
M+ ω + ω2

9M

)
.

Some thermodynamics quantities for a
black hole, from the so-called “area ap-
proach”:

T
(A)
=T0

4M+ω
ω

;

S
(A)
=4π

( Mω
4M+ω

)2
;

C
(A)

V =C0
(

ω
4M+ω

)2
;

F
(A)
=M(8M+ω)

2(4M+ω)
.
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Schwarzschild-Like BH: Aµ = (A0(r),A1(r),0,0)

Geodesic representation of the Schwarzschild-like black hole, consider-
ing ω ≫ M, for the parameters ω = 104 and M = 1:

Geodesic representation of the Schwarzschild-like black hole, consider-
ing ω ≪ M, for the parameters ω = 1 and M = 102:

Some thermodynamics quantities for a
black hole, from the quantum tunneling
method:

T
(BH)

= i
2πr

∣∣∣ r3−M(r2+4ω2)
(r−2M)(r2−4ω2)

∣∣∣ .
Some thermodynamics quantities for a
black hole, from the so-called “area ap-
proach”:

When ω < M:
T

(A)
=T0

(
1− ω

M

)
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S
(A)
=4πM2;

C
(A)

V =C0
ω−M
2ω−M ;

F
(A)
=ω+M

2 .
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M
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ω
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M
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;

F
(A)
=3M−ω
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C
(A)
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Schwarzschild-Like BH: Cosmological Constant Background

Considering L
(Λ)

= −2Λ, the energy-momentum tensor components are given by
T

(Λ)

µν = −2Λgµν .

The field Equation takes the form:

R̄µν
(
F1(R̄)− 2ΛF2(R̄)

)
−

1
2
(
f1(R̄)− 2Λf2(R̄)

)
= 0.

Taking the trace, we obtain the
relation:

f1(R̄)−2Λf2(R̄) = γR̄2+ξ,

where γ and ξ are constants.

leads to the
conclusions

The scalar curvature needs to be
zero:

R̄ = 0.

The vacuum solutions
are also solutions when we

consider a cosmological constant
background: it is a mathematical

reparametrization like
f(R̄) = f1(R̄)− 2Λf2(R̄).
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Reissner–Nordstrøm-Like BH: Cosmological Constant Background

There are no solutions in vacuum, so let’s consider L = L
(EM)

+ L
(Λ)

.

α(r) = 1−2M
r

+
Q̃2

r2
+

2
(
ω2 + 3Mω + 2Q̃2

)
ω2

r
ω
+

4M+ ω

ω

( r
ω

)2
,

β(r) =
1+ 6

(
M
ω
+ Q̃2

ω2

)
1− 2M

r + Q̃2

r2 +
2(ω2+3Mω+2Q̃2)

ω2
r
ω
+ 4M+ω

ω

( r
ω

)2 ,
A(r) = 2

r + ω
,

where M > 0 is the mass, ω > 0 is the Weyl constant and Q̃ is the
dressed/corrected charge.

The model:
f1(R̄) = γR̄2 + 2Λζ

f2(R̄) = ζ

Scalar Curvature: R̄ = 36Q̃2

(ω2+6Mω+6Q̃2)(r+ω)2
;

Kretschmann Invariant: K = h(r)
r8(r+w)4(6Q2+w(6M+w))2

.
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Conclusion

• Black hole solutions of a non-minimally coupled Weyl connection gravity in
the form of generalized Schwarzschild and Reissner–Nordstrøm solutions:
leads to black hole solutions with non-vanishing Ricci scalar and in the cor-
rect limit we obtain General Relativity results;

• In vacuum, themodel under study is equivalent to f(R) theories with theWeyl
connection;

• Considering a cosmological constant backgound, it is mathematically equiv-
alent to a reparametrization of vacuum f(R) theories; however, physically,
they are different;

• Our model introduces an extra linear term in r and a corrected cosmological
constant in the solutions for themetric functions for Schwarzschild-like black
holes;

• Reissner–Nordstrøm-like solution can be found with an extra linear term in r
and corrected/dressed charge and cosmological constant in the solution for
the metric functions.
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