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Timelike Circular Orbits Null Circular Orbits

Innermost Stable Circular Orbit Light-Ring
— Inner edge of an accretion disk. — Inner edge of the shadow.
— Cut-off frequency of the emitted — Real part of the frequency of quasi-normal
synchrotron radiation. modes.

— Cut-off frequency of the GW produced by
EMRIs.
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The radial stability of a light-ring determines the possibility and the radial stability of timelike
circular orbits around it.
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Through the Lagrangian of a test particle and the constants of motion associated to the Killing
vector fields, we introduce,
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Generic spacetime,
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Through the Lagrangian of a test particle and the constants of motion associated to the Killing
vector fields, we introduce,

A(r,0,E, L)

V = rr.2 '2:
c(r,0) = gnf” + goot” =& + B(r.0)

A(r7 07 E7 L) - ggo(,oEz + 2gtapEL + gttL2 9 B(r7 9) = gt2gp - gttgtptp
Circular motion can be found by solving,

Ve(r,0) =0, 0,Ve(r,0) =0, 9Ve(r,0)=0.
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Vertical Stability?

. ; A(r,0,E, L)
_ 2 2 pWs 59
5 = Brr 9 S -
Ve(r,0) = gnf* + goo £+ B(r.0)

Radial Perturbation Vertical Perturbation
r=r"4+6r = F=6, 0=7/24+680 = 0 =20
Radial Epicyclic Frequency: Vertical Epicyclic Frequency:
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Null particles, £ = 0:
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Null particles, £ = 0:
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Timelike particles, £ = —1:
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At a light-ring, 8+ =0 and Q1 = 0.
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Connection between Null and Timelike Circular Orbits

At a light-ring, S+ =0 and Q4 = o4. Thus,

} |:6r2g¢990_i + 283gnp0_j: + (9,2gtt} B ( r)2
LR

(V11)2 = *2 2 g
0 \2 1 8(3g89970-:2t + 28{3gtkpgi + aggtt 9\2
(21)"=—3 = ()
800 LR

New Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike
circular orbits around it.

The vertical stability of a light-ring determines only the vertical stability of timelike circular

orbits around it.
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lllustrations

Fully stable LR: Fully unstable LR:
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lllustrations

Radially unstable and vertically stable LR:
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Radially unstable and vertically stable LR: Radially stable and vertically unstable LR:
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Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, T, k*k" > 0.
Consider a null vector field, k* = b(d} + aiﬁg). Then,

() + (%) = 3z o

Timelike Circular Orbits and the Strong Energy Condition, R, t*t” > 0.

Consider a timelike vector field tangent to a TCO, t* = a(d}' + Qiag). Then,

1 CBs
2g, B

1
(L0 + W) = Rt +
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objects with a Z, symmetry,

Improved Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike
circular orbits around it.
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orbits around it.
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Thank you.
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Generic Spacetime

(M, g) is a stationary, axi-symmetric, asymptotically flat and 143 dimensional spacetime.

asymptotically
—_—

e Two Killing vectors: {n1,m} P [m1,m2] = 0.

e Appropriated coordinate system (t, r, 6, ) such that n; = 9; and 17, = 0,,.
We assume,

1. A north-south Z, symmetry.
2. Circularity,. — gy =8y, =0, p={r, 0}

Gauge choice:

* r and 0 are orthogonal.
. . . — ngZOagrr>O7g96>0
* Horizon located at constant radial coordinate: r = ry.

Causality implies g, > 0

ds® = gue(r, 9)dt2 + 28, (r, 0)dtdp + gou(r, 9)d<p2 + g (r, G)dr2 + goo(r, 9)d92
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Circular Causal Orbits on the Equatorial Plane 6 = 7/2

Effective Lagrangian of a test particle,
—1, timelike

2L=guxI'x"' =&, £€=40  null

1 ., spacelike

Constants of motion associated to the two Killing vectors: E = gy, x* and L = g, x*.

A(r,E, L)
B(r)
A(r,E, L) = gppoE® + 28:,EL + geel® ,  B(r) = g7, — 8etByy

e = — + g, PP=¢

Effective potential V¢(r),

A(r,E,L)

Vf(r)Egrrr.2:£+ B(r)
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Circular Causal Orbits on the Equatorial Plane 6 = 7/2

A particle will follow a circular orbit at r = r°" iff,

Ve(ri)y=0 — A(r9", E, L) = —£B(rc)
VE/(rcir) =0 N A/(rcir7 E, L) — —fB/(I’Cir)

The radial stability of such orbit can be verified by the sign of Vg”(rd'),

) A//(rcir E. L) + fB”(rdr)
V// CIr — ) ) _
13 (r ) B(rur)
VY (r") >0 V{(r") <0
Stable Circular Orbits

For a generic stationary spacetime we can find pairs of solutions corresponding to prograde
orbits (r§", E;, L) and retrograde orbits (ro", E_, L_).
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Light-Rings ¢ = 0

For null particles, circular orbits are light-rings.
VO(rLR) =0 — [gtpapo'i + 2gttp0i + gtt] LR — 0

Vy(r'fy =0 — [gs/awai + 287,04 + &1 k=0

Solving both equations gives the inverse impact parameter o = Ey /Ly and the radial

coordinate of the light-ring, r = r'R.

The radial stability of the light-ring is evaluated by checking the sign of V{'(r'R),

2
Vé’(rLR) _ Lj: gt,/oltpo—:t + Zg;;ai + gt/t/'
gt%p — Btt8pyp

LR

Positive Numerator Negative Numerator
Stable Light Ring
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Timelike Circular Orbits £ = —

d E, L
Angular velocity of timelike particles, Q= - — - e
dt Egop + Lgty

First equation: V_1(r") =0,

Q Q
E:t: 7gtt+gt<p + ’ L:t: gtap"‘ggoap +

VB: | B

B+ = —8t — 2gtch:|: - ng«in:

reir

Second equation: V/ (r") =0,

—8i, T \/(81,)* — 818},

(648 + 28,0 gl =0 — Q= %

peir

Radial Stability, V7 (ren) =

8 E: + 28l ExLy + giil% — (82, — 81t8sp)"
gttp — 8tt8ypyp

reir
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