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Motivation

How does a black hole interact with the cosmic medium?

What is the influence of cosmological evolution on the growth of the horizon?
(previous approaches: McVittie, Bondi, Einstein-Straus, Husain-Martinez-Nuriez, ...)

The horizon is part of the unknowns of the problem, but is only
determined a posteriori from the solutions.
Is there a way to make it appear explicitly in the equations”

Our goal

Develop a general method to study the near-horizon asymptotics of evolving BHs
that can be applied for any matter fields and spacetime asymptotics
(in spherical symmetry)

We consider a scalar field as matter, both for simplicity and for its relevance in inflation.
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—ddington-Finkelstein coordinates (1)

A general spherically symmetric geometry can be written in EF coordinates

ds? = — e?PUD AW, Ndv? + 2’V dvdr + r2dQ?

ris the areal radius, v is an ingoing null coordinate

For a BH, these coordinates are_regular at the BH horizon

| The apparent horizon is determined by |
0,=0< A(v,r) =0 |

We must also ensure that 8, < 0 and £,6, < 0, so that the apparent horizon
IS a future outer trapping horizon [Hayward ‘94]
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—ddington-Finkelstein coordinates (2)

The equation A(v, r) = 0 implicitly defines the horizon as a function of v :

ry = ry(v)

In case there are multiple branches, we may take the outermost one.

The main problem with these coordinates is that the apparent horizon can only be
t determined a posteriori, once we have found a solution to the field equations. |

We need to ‘extract’ the information on the zeroes of A.
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New coordinates adapted to the evolving horizon

It is convenient to adopt a new radial coordinate z that is adapted to the evolving horizon

In the static case it reduces to [Rezzolla, Zhidenko '14]

In the new coordinates, the horizon is at z = 0, while spatial infinity isatz = 1.

2P0 (y 2PV (v r2(v
ds? = | —eVIAW, 7) + 1) dv? + H )dvdz+ ) dQ?
1 -z 1 —z)? (1 -2)?

| The main advantage is that r;;(v) now appears explicitly in the metric |
| (no longer indirectly through A) s
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Einstein-scalar system

1
Gop =K1y =K [%cbdbfﬁ ~ 8ab (586010&5%45 + U(qﬁ))]

in the coordinates (v, z) the field equations read:

28 = k(1 = 2)(¢)°
2

1-A-(1-2)(A+Ap) = (lKjZ)z Uug) ,

A _’;HA/=K<I>_H¢/_ ¢ >|:(1_Z)¢/A_eﬂrH<r_H¢/_ ¢ >:| ,
l—-z ry ry 1 -z ry |

—p . 5 —B / . ; o)
2ﬂ”A+A”+,B’(3A’+2ﬁ’A) B 2e " ry (rH , P >= ke P ryd (er)/_ 2¢ )_ 2k rU(¢) |

1 -z Iy -z l -z Iy -z (1-2z)*

Klein-Gordon equation:

i/ ¢ ’;H 7, eﬂ(l _Z)Z 7 Py oY eﬁrH ou —_
% +1—z_rH(1_Z)¢ T (49" + 4% +A¢ﬂ)_2(1—z)2 Y, =0
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Z-expansion

We expand the equations in the proximity of the horizon, assuming that
both matter and geometry are regular around z = 0

Ansatze: analiticity in z

Av,2) = ) a0, 0D = ) b0, 1.2 = ¢0<v><1 + ) cn<v>z">
n=1 n=1 n=1

NB: by(v) = Ois a gauge choice anda; > 0 < £,6,< 0

Substitute the ansatze in the field equations and expand.

To first order in z, the solutions are:

1 N2
2 2 42 " .
a,=1-xrzU(p,) >0, b, = 5’“’1 0o Ul'g = K(C1€/70”H_ ”H¢o>
Higher order coefficients can similarly be computed, complications are only algebraic.
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Physical meaning on the first-order solutions

To gain some physical insight, let us compute the fluxes in the radial null directions at z = 0

ci > . P\
Tabnanb — - Tablalb = <¢0 — C1¢0_H>
rf Iy
outgoing flux ingoing flux

Combining this with the first-order solution, we get the accretion law

2 2
. K Fi K Iy
Fr = T, 1" = &) >0
1 — ‘5\ 1-&
Other geometric derivations:
_ .2 2
& =xryU(d,) = rgleg [Ashtekar, Krishnan ‘04; Booth et al. 06]

This result Is consistent with the area theorem

S It can be rewritten as a “Bondi-like” accretion formula
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Neumann boundary conditions

The scalar field obeys the boundary condition (0,¢)|,_o =0 <= ¢; =0

(equivalent to the condition T, nn’ = 0 at z = 0)

This solution does not admit a static Iimit

In fact, in the 450 — 0 limit the geometry becomes singular

{ :

&
R=—224%+ |12 —r,(1 —= &) — | z+ O(Z>
2 [ ry( )%}Z (z9)

h'd

" J

€=xriU,), H=xrid,)

Thiké shows that the outgoingflux Canhot be zéro at aII”timeé, but ,’
only relaxes to zero as the BH approaches equilibrium.‘
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Approaching equilibrium (1)

We expand the field equations around a static background
horizon FH(V) = I’IS)) + rg)(v) + 1’1(12)(\/) + ...
A, 2) =ADD) + AV, ) + AP, ) + ...,

dyﬂggfa' v, 2) = pOW) + Vv, 2) + pP(v,2) + ...,
d(,2) = O+ pV,2) + pP W, 2) + ... .

sealarield g ) = O + gD + P + .. [BP0) = $P,0)]

We assume Schwarzschild-de Sitter as a background:

AVQ) = 2+ S0P UG) [(1—z>— ] . pOW) =0

(1 -2

oU

the background scalar field must be in equilibrium: o

dO
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Approaching equilibrium (2)

We perform a double expansion:
analytic ansatz in z at each order in the perturbative series

A, = P aP0)E . pO0.2) = Zb<"><v)z H0.2) = ) + Zl<"><v>z

k 1

iThIS amounts to mapplng the Elnstem equatlons to a (mflmte dlmenS|onaI dynamlcal system ‘i

for the variables {r(”) gb(”‘) N b(”‘) l(”)}

To second order in perturbahon theory and in the z—expansion, the solution is:

- B — )

1 9*U
—— (¢§1))2]+2r§?)r§)U(¢(O)) - 2
HO

2 o2

" - - J

Av,2) =R 1-« (rg”)z[U(gb(O)H

K 2 1 aZU
—K 4 (rg)))2 (1 . Z <ll(1)> > U(¢(O)) +— : <¢(1) + l(l)> ¢(1) a¢2
HO

K
(v,2) = <l(1)> 2=l (10 = 41) 2 4.
B0 = (PO + 0+ 9@) + (10 +1P ) 2+ (L0 +12) 2+ ..

\'g

A\
\9]

+

1 2
+ 202U+ (1)

Note that the second order solution for the geometry depends on ¢S, IV, IV,

although not on higher order corrections to the scalar field.
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Approaching equilibrium (3)

The dynamics boils down to the following autonomous dynamical system

("‘
i 0) i(1) _ 1 1
Qe =~y + el

( )
},.I(_?))z 62 U

2 9g?

. ( 1
rOID = [ HD 5(1 — %0 4 25)11“)

PO )

\ \ J

The solution qb(()l) = ll(l) = 0 is an attractive fixed point provided that:

1 2
<—|2o+o+1-80)
¢(0) 8

0°U
20+ 6 +1-89>0, 0<y(1-8Y)- zj(rg)>)2a72

In the large time limit, we get (4, is the least negative eigenvalue)

(0)

2
PO ~ p e Kp~Ay H0) 24,17

_|_
2(1—&0) A

, AD) ~ E G+ A e r D) ~ Ary
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N
N

Approaching equilibrium (
We obtain the following scaling relations

rg(v) — ré

0

~ KWL VW) ~ 40w ;

These are “universal” since they do not depend (except for prefactors) on
the shape of the potential, boundary data, etc

(However, they do depend on our modelling of ¢! as a linear combination of ¢V, 1))

o 7]

Potentially testable with numerical simulations
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Summary

We introduced a new radial coordinate z = 1 — ry(v)/r adapted to the evolving horizon

The equations of motion can be solved order by order in z. The first order solution gives an
exact Bondi-like accretion law.

The solution with Neumann boundary conditions at the horizon does not admit a static
limit.

Near-equilibrium black-holes can be studied introducing a double expansion (perturbative
and in 2). The Einstein equations are mapped to an infinite-dimensional dynamical system.

The approach to equilibrium is characterized by universal scaling relations.

Future work

Matching the near-horizon solutions to the region far from the BH

Similar analysis for different matter fields (e.g., hydrodynamic matter, gauge fields) and for
alternatives to general relativity

Going beyond spherical symmetry
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