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An explicit exact superposition of the Schwarzschild black hole encircled by a disc.
@ exact (vacuum) solution to Einstein equations

Assumptions:

@ axially symmetric thin disc = distributional source o §(z)
@ zero overall net rotation = static metric

Based on:
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What is it about?

An explicit exact superposition of the Schwarzschild black hole encircled by a disc.

@ exact (vacuum) solution to Einstein equations

Assumptions:
@ axially symmetric thin disc = distributional source o §(z)

@ zero overall net rotation = static metric
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© Weyl metrics

@ Discs with power-law density profiles

© Kuzmin-Toomre and Vogt-Letelier discs
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Weyl metric

Gravitational field of static and axially symmetric vacuum spacetimes is described by
ds® = —e? dt* + pPe 2" d¢” + e (dp® + d2°) (1)

where t, p, ¢, z are the Weyl cylindrical coordinates and v(p, z), A(p, z).
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Weyl metric

Gravitational field of static and axially symmetric vacuum spacetimes is described by
ds? = —e? dt? + p?e 2 dp? + e #(dp? + dz?) , (1)
where t, p, ¢, z are the Weyl cylindrical coordinates and v(p, z), A(p, z).
Vacuum Einstein equations then
Av =0, Ap= p(u?p - 1/22) , Az =2pV,V;, (2)

where A is 3D Laplace operator in cylindrical coordinates (p, z).
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properties of the Laplace equation

Look for an axially symmetric thin disc solution: we will heavily rely on the special
Q linearity

@ Kelvin transformation (inversion in a sphere R3)
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Two families of discs (empty in their center)

@ by an explicit integration of the axially symmetric Green function
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Two families of discs (empty in their center)
@ by an explicit integration of the axially symmetric Green function

@ from the well-known Kuzmin-Toomre family using linearity (discs obtained by
Vogt and Letelier)
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@ Weyl metrics

© Discs with power-law density profiles

© Kuzmin-Toomre and Vogt-Letelier discs
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Potential in terms of the Bessel functions

The axisymmetric Green function of the Laplace equation can be expressed as

G(p,p',2,2') = —27rp,/0 Jo(sp') Jo(sp)e™17=% I ds ,

where Jy is the zero-order Bessel function of the first kind and s an auxilliary real
variable.
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Potential in terms of the Bessel functions

The axisymmetric Green function of the Laplace equation can be expressed as

Gp.p2.7) = —2np) /O Jo(s) Jo(sp)e=71ds (3)

where Jy is the zero-order Bessel function of the first kind and s an auxilliary real
variable.

Potential due to a thin source of surface density w(p) placed at 2/ =0

vp.2) =2 [ [ ol lerd V(e dsd (4)
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vpz)=—2n [ [ ow(i) (s (spe s dsdl
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Our strategy now:

@ perform the integration for elementary density terms

construct reasonable physical discs by simple superposition of elementary terms
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Strategy

vp.2) =2 [ [ttt V(e dse

Our strategy now:
@ perform the integration for elementary density terms

@ construct reasonable physical discs by simple superposition of elementary terms
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Elementary density terms

Consider the density as
w(p) = p?, p€(0,b), I > 0 integer. (5)

Then, the radial integration gives

I+1
2/ 2/42
v (p, 2) b+llzb//+1 JI(MO), (6)
where we have denoted
Lap.) :/ s Jg(sb)J,(sp)e 17 ds . (7)
0
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The Laplace transform of Bessel-function products

directly

B —/0 s Jz(sb)J,(sp)e 17l ds

Z(0,0,0) =

xlﬁkK(k)
1

2— k2
o

k

where k 1= 2vbp
2
Kw)—kfwﬂ,
1 z|lk
Zo,1,0) = 5 { i

(o b+ 22
p— bﬂ < 4bp
2m/bp |p+ b

G ) ~Kw

1J. T. Conway. “Analytical solutions for the Newtonian gravitational field induced by matter within
MNRAS 316.3 (2000), pp. 540-554
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Conway- studied this kind of integral thoroughly — the lowest orders can be computed
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The general form of elementary density-potential pair

The gravitational potential® due to the elementary density terms w(p) = p?

(1) . (2 . (2/)\ﬁ eh) _penb—p 2z ’k 4bp
VE0(p,2) = 2P lel (b — p) - B~ PR~k ()~ P e 2 (4 J
where P(2)) are polynomials, e.g.

0

2/ =0 Pioh | 1

(const. 731(50) 1

densit

ensi y) ’P’(<O) b2 _ p2
2
Pith | 3302 - 22)

2/ =2 PE | (B2 + 492 — 1122)

77,(?) $(5b* — b?p? + 4b%2% — 4p* + 52* + 16p%2%)

2p. K., D. Kofroii, and O. Semerak. “Static Thin Disks with Power-law Density Profiles”. ApJ 931
(2022), p. 161.
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V@ (p, 2) = 2P| z|H(b — p) — 479(2”v E(k) — 73(2’)

K(k)—penb—rz Zkn <—4bp k)

Vbo " bt pvBy \(bt ol

+(15p* + 82* — 40p°2?)

555 (9b* + 16b%p? — 47b%22 + 64p* + 2742* — 607p?2%)

735 (816 —b*p? + 8b*22 — 16b%p* — 107b22* + 19262222
—64p°% — 1542 — 267p%2* + 768p*2?)

3 (35p° — 162° + 168p?z* — 210p*2?)
1255 (256°4-36b%p? — 107b*22 + 64b°p* + 306b°2* — 631b%p? 22+
+256p°% — 14527° + 8132p2z* — 5175p%22)
1225 = (325b°% — bOp? + 126022 — 4b*p* — 59b%2* + 80b%p?2? — 64b%p° + 586b%2° —
—2819b%p?z* + 1536b%p* 2% — 2568 + 89228 — 800p%2° — 10307p*z* + 6144p°2?)

=] = =] E E DA
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Negative powers?

To obtain the potential due to the density terms of negative powers, we can perform

an inversion with respect to the outer rim p = b, (i.e. Kelvin transformation)

b?p b’z

— 5 zo s
PR+ p? 422

and the corresponding potential transform

b b’p b?z b
L) RN 1) ( > =  w(p) = pzl — EW(bZ/p) =

P2+ 22" p2 4 22

So, the density-potential pair

-3-21  (=3-2)) L“” (2,)< b?p b’z >

P2+ 22" 2 + 22
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Physical discs
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The potential of all these discs have been found in closed-forms.
The discs empty in their center are suitable for a superposition with the Schwarzschild
black hole
1| di+dr—2M
14 = nNnN—-—F—7-,
S T2V dh + dy + 2M
done by a simple sum

dlZ*\//) + (2| F M)?

(10)
o (11)
The second metric function A has to be (when needed) integrated numerically
P, Z
A= / _ /)(1/3 —v3)dp +2pv v, dz . (12)
J axis
«O>» «F>r «=r «=>» E AR
-~ PetrKotlafik Gravity of static thin discs

V = VSchw T Vdisc



Summary

The potential of all these discs have been found in closed-forms.

The discs empty in their center are suitable for a superposition with the Schwarzschild
black hole

1 di+dr—2M
chw==In———— dio = M 10
PSch 2 nd1+d2+2/\/l 12= \/p ‘Z’:F ) ( )

done by a simple sum
V = VSchw T Vdisc - (11)
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Summary

The potential of all these discs have been found in closed-forms.

The discs empty in their center are suitable for a superposition with the Schwarzschild
black hole

1 di+dr—2M
chw==In———— dio = M 10
PSch 2 nd1+d2+2/\/l 12= \/p ‘Z’:F ) ( )

done by a simple sum
V = VSchw T Vdisc - (11)

The second metric function A has to be (when needed) integrated numerically

Pz
A\ = / p(y’2p - 1/’22) dp+2pv,v,dz. (12)
a

Xis
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Figure 1: Contourplot of the total potential in Schwarzschild coordinates.
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A, = p(v?

2
0 V)
Az =2pv v,

(13)
(14)

Whereas v adds linearly, the non-linearity of Einstein equations clearly manifests in A.
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BH-+disc where A is known?

Ay = 0(7 —2) (13)
Az =2pv v, (14)

Whereas v adds linearly, the non-linearity of Einstein equations clearly manifests in A.

There are discs, for which both metric functions we obtained explicitly in
closed-forms for the whole superposition.
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@ Weyl metrics

@ Discs with power-law density profiles

© Kuzmin-Toomre and Vogt-Letelier discs
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Kuzmin-Toomre family of thin discs

Kuzmin and Toomre3:4 obtained a family of thin discs which Newtonian densities are

2n+1
W — (2n+1)b M (15)
o (2 + b2)nt3/2

where M is the discs total mass and b is a constant, described by the gravitational
potential

d (2n— bk
Uy = — 2n—1 szn K I [/)<+1'Dk (]cos@b\) , (16)
where P; are the Legendre polynomials, and
z|+ b
2= p* 4 (|z| + b)?, | cos Op| := Hrb . (17)

3G. G. Kuzmin. “A stationary Galaxy model admitting triaxial velocity distribution”. Astr. Zh. 33
(1956), pp. 27-45.

*A. Toomre. “On the Distribution of Matter Within Highly Flattened Galaxies.”. ApJ 138 (1963),
p. 385.
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Vogt-Letelier discs

Vogt and Letelier® took a particular superposition of the Kuzmin-Toomre discs

(mvn) — W(mrn) -1 k n & 1
Y kz_%( ) (k 2m+ 2k +1° (18)
where W(m™") is a constant. The disc’s Newtonian density
2m+-1 2n
wmn) — yymm MP p (19)

27 (,02 + b2)m+n+3/2 ’

D. Vogt and P. S. Letelier. “Analytical potential-density pairs for flat rings and toroidal
structures”. MNRAS 396.3 (2009), pp. 1487-1498.
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Vogt-Letelier discs

Vogt and Letelier® took a particular superposition of the Kuzmin-Toomre discs

(mn) _ pyman) S~ (_qye (M) Vmk
Y W kz_%( 2 <k>2m+2k+1’ (18)

where W(m™") is a constant. The disc’s Newtonian density

)Mb2m+1 p2n

(m,n) _ (m,n
wmt =W 2r (p2 + b2)mEni2

The special case m = 0 comes also from the inversion around p = b (Kelvin
transformation) — inverted Kuzmin-Toomre discs.

°D. Vogt and P. S. Letelier. “Analytical potential-density pairs for flat rings and toroidal
structures”. MNRAS 396.3 (2009), pp. 1487-1498.
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Ressumation of the potential

Fixing the constant W(™" so the total mass of the disc is M, the Vogt-Letelier
potential can be recast into a form

m+n+1/2) ez

(™) = —(2m + 1)M< Z Q(mn T Pj(costy) , (20)

where
o _ | it aF (4 = BEL B 4 L) i < m
’ G (o) 3 (552 52, = m = m 22— m+1;1) ifj>m,

and 3F> are the generalized hypergeometric functions.
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The second metric function \

The potential is separated in r, and 6. We can rewrite the equations for A in terms of
(rp,0p) and integrate them over the r;, coordinate®

m+n
mn m+n+1/2 mn) b kt1

B\ 7):_(2m+1)2( n / > Msin® 60, > B ) k+,+273k/(9b) (21)

k,I=0 "

where
(m,n) ~(m,n)
(m,n) _ Q9 22
B k+142 (22)
Pri=(k+1)(1 +1)PcPr+2(k + 1) cos Op| Pk P) — sin? 0p P, P, (23)
d

Pp=—"—P 24
= dTeosay) Pecosts) (24)

6J. Bi¢dk, D. Lynden-Bell, and C. Pichon. “Relativistic Discs and Flat Galaxy Models”. MNRAS
265 (1993), p. 126.
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V = VSchw T Vdisc

«O>» <Fr «Zr «E» Q>

The Laplace equation is linear = the total gravitational potential is a simple sum

(25)



The total gravitational potential

The Laplace equation is linear = the total gravitational potential is a simple sum

V = VUSchw + Vdisc - (25)

wistonv.com ||
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Figure 2: Contourplot of the total potential in Schwarzschild coordinates.
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The second metric function \

The metric function A does not superpose that simply. In fact, we denoted
A= )\Schw + )\disc + )\int ) (26)
where Aschw, Adisc are contributions from the black hole and the disc, and

>\int,p = 2p(VSchw,deisc,p - VSchW,szisc,z) ) (27)

)\int,z = 2p(VSchw,deisc,z + VSchW,szisc,p) . (28)
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The second metric function \

The metric function A does not superpose that simply. In fact, we denoted

A= )\Schw + )\disc + )\int )

(26)
where Aschw, Adisc are contributions from the black hole and the disc, and

>\int,p = 2p(VSchW,deisc,p - VSchW,szisc,z) ) (27)
/\int,z = 2p(VSchw,deisc,z + VSchW,szisc,p) .

Notice that (27), (28) are linear in vgisc, hence Ayt satisfies the same recurrence
relations as vgisc. Namely

b 0 M di d> 2MM
)\‘(0,n+1) _ )\.(O,n) v )\.(O,n) /\.(0,0) _ M N o
int int + 2(n+ 1) ab int ) int rh b+ M b—M b2 _ M2 )
(2m —+ 1)(2/7 + 3) ‘(m+1,n) _ /\-(m,n) 4m(n + 1)
2m+2n+3 ™

int

/\(m7n+1) _b 0

m(n+1) L
2m+2n+3° ™

ab int
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Power-law discs vs regular discs around the black hole

power-law discs

regular discs

only potential known explicitly

full metric

inner edge

without edge

higher derivatives of curvature might
diverge at the inner rim

Petr KotlaFik

field is regular everywhere outside of
horizon
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Two simple physical interpretations of the disc are possible

@ a single component ideal fluid with a certain surface density (¢”~*o) and
azimuthal pressure (e”~*P) which keeps the orbits at their radius

@ two identical counter-orbiting dust components with proper surface densities
(04 = 0 = 0/2) following circular geodesics

Both characteristics 0 and P are encoded in the jump of the normal derivative of the
gravitational potential

v, =01 5 =0
o+ P= (2—) —w(p), P== (Zzﬁ prp=w(p)pv,y

(29)
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Physical interpretation

Two simple physical interpretations of the disc are possible

@ a single component ideal fluid with a certain surface density (e”~*o) and
azimuthal pressure (e?~*P) which keeps the orbits at their radius

Petr Kotla¥ik Gravity of static thin discs



Physical interpretation

Two simple physical interpretations of the disc are possible
@ a single component ideal fluid with a certain surface density (e
azimuthal pressure (e?~*P) which keeps the orbits at their radius

@ two identical counter-orbiting dust components with proper surface densities
(04 = o_ = 0/2) following circular geodesics

¥=Ag) and
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Physical interpretation

Two simple physical interpretations of the disc are possible
@ a single component ideal fluid with a certain surface density (¢”~*¢) and
azimuthal pressure (e?~*P) which keeps the orbits at their radius
@ two identical counter-orbiting dust components with proper surface densities
(04 = o_ = 0/2) following circular geodesics

Both characteristics o and P are encoded in the jump of the normal derivative of the
gravitational potential

v.(z=0") v,(z=07)
o+P=""0——=wlp), P=""0——pr,=w(p)ov,. (29)
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Physical interpretation

We checked the basic physical properties. For wide range of M, M, b, the discs have
@ reasonable relativistic density and pressure profiles
@ densities and pressures are positive

@ all energy conditions are satisfied
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Brief summary

@ explicit potentials of static power-law discs
around Schwarzschild BH

@ explicit full metric of static regular discs around
Schwarzschild BH (constructed from
Kuzmin-Toomre solution)

@ closed-form formulas
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Brief summary

@ explicit potentials of static power-law discs Question time!
around Schwarzschild BH

@ explicit full metric of static regular discs around vnun Q“EST“]"S

Schwarzschild BH (constructed from
Kuzmin-Toomre solution)

@ closed-form formulas
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