OBSERVING BLACK HOLES VIBRATIONS

VASCO GENNARI

DECEMBER 19-20, 2022 XV BLACK HOLES WORKSHOP - ISCTE

1. ringdown

WHY STUDY RINGDOWN?

unique possibility of studying general relativity (GR) in strong field and extreme curvature regimes

V. GENNARI - XV BLACK HOLES WORKSHOP

are we really observing black holes?

is GR the correct theory of gravity?

are there quantum effects at the horizon?

RINGDOWN BASICS

V. GENNARI - XV BLACK HOLES WORKSHOP

what is the ringdown?

RINGDOWN BASICS

what is the ringdown?

inspiral

RINGDOWN BASICS

what is the ringdown?

inspiral

black hole (BH) linear perturbation theory predicts:

V. GENNARI - XV BLACK HOLES WORKSHOP

 $h = \sum_{l} A_{lm} e^{-i\omega_{lm}t - t/\tau_{lm}} {}_2Y_{lm}$

lm

black hole (BH) linear perturbation theory predicts:

different modes of vibration

V. GENNARI - XV BLACK HOLES WORKSHOP

 $e^{-i\omega_{lm}t-t/\tau_{lm}} 2Y_{lm}$ A_{lm} lm

h =

black hole (BH) linear perturbation theory predicts:

provide angular dependence for the modes

V. GENNARI - XV BLACK HOLES WORKSHOP

 $h = \sum_{lm} A_{lm} e^{-i\omega_{lm}t - t/\tau_{lm}} 2Y_{lm}$

(spin-weighted) spherical harmonics

inclination l

 $e^{-i\omega_{lm}t-t/\tau_{lm}}$

V. GENNARI - XV BLACK HOLES WORKSHOP

exponentially damped harmonic oscillations

inclination *l*

ω_{lm} and au_{lm} are known once M and χ are fixed

depend on the specific process that perturbs the BH - are not known analytically

V. GENNARI - XV BLACK HOLES WORKSHOP

• inclination l

 ω_{lm} and τ_{lm} are known once M and χ are fixed quasinormal modes

2. higher modes

HIGHER MODES (HMS)

which modes are observable in the ringdown?

HIGHER MODES (HMS)

which modes are observable in the ringdown?

for quasi-circular BHs with masses $m_1 \simeq m_2$:

- dominant contribution
 (2,2) fundamental mode
- subdominant contribution
 (3,3), (2,1), (4,4) higher modes

HIGHER MODES EXCITATION

HMs can be excited by:

• increasing the mass ratio $q \equiv m_1/m_2$

• increasing the initial spins χ_1 and χ_2

HIGHER MODES EXCITATION

HMs can be excited by:

• increasing the mass ratio $q \equiv m_1/m_2$

• increasing the initial spins χ_1 and χ_2

can we observe HMs with current detectors?

TEOBPM MODEL

Damour and Nagar (2014) 1406.0401

EOB model that includes post-merger nonlinearities

advantages:

- fixes the starting time
- more data with high SNR
- includes the A_{lm}

V. GENNARI - XV BLACK HOLES WORKSHOP

'n

HMS DETECTABILITY

$ln B \simeq \frac{1}{2} \left(1 - FF^2\right) SNR^2$

V. GENNARI - XV BLACK HOLES WORKSHOP

SNR needed to detect the (3,3) mode (with lnB = 5)

HMS DETECTABILITY

SNR needed to detect the (3,3) mode (with lnB = 5)

HMS DETECTABILITY

SNR needed to detect the (3,3) mode

21

3. data analysis

INSTRUMENTAL NOISE

INSTRUMENTAL NOISE

V. GENNARI - XV BLACK HOLES WORKSHOP

we used IEOBPM for a time domain analysis of LIGO-Virgo data with pyRing

GWTC-3 ANALYSIS

V. GENNARI - XV BLACK HOLES WORKSHOP

LVK in IMR TEOBPM in RD

GWTC-3 ANALYSIS

V. GENNARI - XV BLACK HOLES WORKSHOP

LVK in IMR TEOBPM in RD

Capano et al. (2021) GW190521A 3.8

V. GENNARI - XV BLACK HOLES WORKSHOP

observations of HMs in the literature:

IMBH RD

Capano et al. (2021) 3.8GW190521A

V. GENNARI - XV BLACK HOLES WORKSHOP

observations of HMs in the literature:

this work

IMBH RD

no HMs in GW190521 $ln B_{33,22} = 0.13$

V. GENNARI - XV BLACK HOLES WORKSHOP

s in the literature:

this work

no HMs in GW190521 $ln B_{33,22} = 0.13$

r analyses ongoing...

IMBH RD

GW170729	Chatziioannou et al. (2019)	1.6	BBH
GW190814A	Abbott et al. (2020c)	22.1	BH-(?)
GW190412A	Abbott et al. (2020a)	8.3	BBH

s in the literature:

this work

no HMs in GW190521 $ln B_{33,22} = 0.13$

r analyses ongoing...

IMBH RD

IMR IMR IMR

4. tests of no-hair

V. GENNARI - XV BLACK HOLES WORKSHOP

V. GENNARI - XV BLACK HOLES WORKSHOP

V. GENNARI - XV BLACK HOLES WORKSHOP

V. GENNARI - XV BLACK HOLES WORKSHOP

SUMMARY

- the RD waveform is a superposition of quasinormal modes

- we analysed the RD signals in GWTC-3 using TEOBPM

V. GENNARI - XV BLACK HOLES WORKSHOP

RD provides unique access to strong field and extreme curvature regimes

the excitation of HMs strongly depends on mass ratio and inclination

we used a RD model that includes post-merger nonlinearities

we developed an analytical procedure to predict the detectability of HMs

we found results consistent with LVK and no HMs in GW190521

importance of our results for future tests of the no-hair theorem

backup slides

GW SIGNAL

 $h_{+} - ih_{\times} = \sum A_{lm} e^{-i\omega_{lm}t - t/\tau_{lm}} 2$ lm $h_{ij} = h_+ e_{ij}^+ + h_{\times} e_{ij}^{\times}$ $h \equiv F_+ h_+ + F_{\times} h_{\times}$

differential length of the interferometer

GW interaction is encoded in the amplitude and phase of the laser output

V. GENNARI - BACKUP SLIDES

$$Y_{lm}$$

ringdown waveform polarization tensors antenna functions

$$h = \frac{\Delta L}{L}$$

BAYESIAN ANALYSIS

parameter estimation

from Bayes theorem, we can find probability density of the parame

• model selection

the Bayes factor tells us which model better describes the d

the eters
$$\frac{p(d \mid \theta, H) p(\theta \mid H)}{p(d \mid H)} = p(\theta \mid d, H)$$

posterior distribution
 $\frac{p(d \mid H_1)}{p(d \mid H_2)} \equiv B_{1,2}$

RD STARTING TIME

when the RD starts?

- too late, surely linear but lose all the signal
- too early, linear model to nonlinear data

difficult to choose the starting time

V. GENNARI - BACKUP SLIDES

results depend on the starting time

SPHERICAL HARMONICS

 $_2Y_{lm}(\iota,\varphi)$

i is the inclination

V. GENNARI - BACKUP SLIDES

 $h = \sum A_{lm} e^{-i\omega_{lm}t - t/\tau_{lm}} {}_2Y_{lm}$ lm (spin-weighted)

spherical harmonics

TESTS OF NO-HAIR

consider fractional deviations from GR

$$\omega_{lm} = \omega_{lm}^{GR} (1 + \delta \omega_{lm})$$
$$\tau_{lm} = \tau_{lm}^{GR} (1 + \delta \tau_{lm})$$

if the posteriors on $\delta\omega_{lm}$ and $\delta\tau_{lm}$ support zero, then GR is correct

V. GENNARI - BACKUP SLIDES

 $\delta \omega_{lm}, \delta \tau_{lm}$ are generic additional degrees of freedom
 possibility to map $\delta \omega_{lm}, \delta \tau_{lm}$ to specific theories

ALTERNATIVE SCENARIOS

- are we really observing black holes?
- is GR the correct theory of gravity?
- are there quantum effects at the horizon?
 - BH entropy (Bekenstein-Hod bound)

exotic compact objects (boson star, gravastar, fuzzball, ...)

modified theories of gravity (EdGb, dCS, EFT, ...)

area quantisation (Bekenstein-Mukhanov conjecture),

systematics? unmodeled properties? environmental effects?

