Critical vacuum collapse —



# Universality of curvature invariants in critical collapse of axisymmetric gravitational waves

Tomáš Ledvinka and Anton Khirnov

Institute of theoretical physics, Charles University, Prague

#### Outline

- 1. Introduction
- 2. Field equations, Coordinates
- 3. Navigation in the vacuum spacetime
- 4. Results

References

## 1. Introduction

#### Introduction

- Massless scalar field Φ evolution [Choptuik1993]
- Einstein gravity provides arena  $G_{ab}[g_{cd}] = 8\pi T_{ab}[\Phi]$
- Spherical symmetry + Numerical solution
- · Various initial data (ID) families, varying 'strength' p
- · Possible outcomes: Black hole or empty spacetime
- Fine-tuning  ${\it ID[p]}$  in-between these outcomes  $-p_*$
- · Surprise: For massless  $\Phi$  initial data  $\Phi_0[p]$  provide

$$M_{BH} \sim |p - p_*|^{\gamma}$$

- $\cdot$  Universality  $-\gamma$  for any initial data
- Discrete self-similarity near  $p_*$  we see 'echoes'
- Various matter models lead to similar behavior with specific  $\gamma$  (see [Gundlach1999])



## Introduction (continued)

- Gravitational waves (GW) instead of matter
   (see [Abrahams1993] [Abrahams1994] [Alcubierre2000] [Garfinkle2001] [Rinne2008]
   [Sorkin2011] [Hilditch2013] [Hilditch2017] [Khirnov2018] [Ledvinka2021])
- Spherical symmetry no longer possible (in 3+1D)
  - ⇒ even more demanding computations
- Hard to navigate in dynamic vacuum spacetime
- Larger space of outcomes (e.g. several BHs)
- · Early results hard to reproduce by 'BBH merger codes'
- · But recent results show that
  - 'moving puncture' gauge not working (and has to be improved)
  - off-center curvature maxima observed on the symmetry axis
  - no universal  $\gamma$  observed
- · 2021 universality and partial self-similarity identified

# 2. Field equations, Coordinates

## **Evolution equations**

- 3+1 splitting of spacetime into t = const. hypersurfaces  $\Sigma_t$
- Each  $\Sigma_t$  is 3D manifold with metric  $\gamma_{ii}$
- Its embedding into 4D spacetime yields
  - lapse  $\alpha$  and shift  $\beta^i$ , unit normal  $n^i$
  - extrinsic curvature Kiii
- · Standard BSSN equations

$$-\gamma_{ij} \to \left\{ \gamma = \det \gamma_{ij}, \tilde{\gamma}_{ij} = \gamma^{-1/3} \gamma_{ij} \right\}$$

$$-K_{ij} \to \left\{ K = \operatorname{tr} K_{ij}, \tilde{A}_{ij} = \gamma^{-1/3} \left( K_{ij} - \frac{1}{3} K \gamma_{ij} \right) \right\}$$

$$\tilde{\Gamma}^{i} = \tilde{\Gamma}^{i} \tilde{\chi}^{jk} \text{ as independent field.}$$

 $-\tilde{\Gamma}^i = \tilde{\Gamma}^i_{ik} \tilde{\gamma}^{jk}$  as independent field



time

- Initially we used 1+log (Bona-Massó, moving puncture) slicing
- No shift  $(\beta^i = 0)$
- Evolution equations (1T-2D approach)  $\partial_t U = F(U, \partial_i U, \partial_{ii} U)$ - with  $U = [\log \gamma, \alpha, \tilde{\gamma}_i i, K, \tilde{A}_{ii}, \tilde{\Gamma}^i]$

#### Brill initial data

- Time symmetric  $K_{ij} = 0$ ,  $\gamma_{ij} dx^i dx^j = \psi^4 \left[ e^{2q} (dr^2 + r^2 d\theta^2) + r^2 \sin^2 \theta d\varphi^2 \right]$
- · Deformation of the initial slice determined by

$$q(x^i) = A \frac{r^2}{\sigma^2} e^{-\frac{r^2}{\sigma^2}} \sin^2 \theta$$

- $\cdot A = 0 \implies$  Minkowski spacetime
- · Hamilton constraint  $\implies \psi$

$$\Delta \psi + \frac{1}{4} \left( \partial_{\rho\rho} q + \partial_{zz} q \right) \psi = 0$$

· 
$$M_{ADM} = \int \frac{|\nabla \psi|^2}{\psi^2} d^3x$$

- $\cdot$  A > 0 and A < 0 are different
- Why  $M_{ADM}(A) \rightarrow \infty$  see [Eppley77]



## Time-asymmetric initial data

- Time asymmetric  $\tilde{\gamma}_{ij} = 0$ — inspired by [Abrahams1994]
- · Complementary to Brill ID
- · Deformation of the initial slice determined by

$$K_{\theta}^{r}(x^{i}, t=0) = A \frac{r^{2}}{\sigma^{3}}(\sigma - r)e^{-\frac{r^{2}}{\sigma^{2}}}\sin 2\theta$$

- Hamilton and momentum constraints  $\implies \psi, K^r_r$  and  $K^{\varphi}_{\varphi}$
- $\cdot A = 0 \implies Minkowski spacetime$
- Two branches of M(A) dependence —we use e.g.  $A = -\overline{1.1}$  for upper branch



## Slicing conditions

•  $1 + \log$  (Bona-Massó, generalized harmonic) slicing

$$\partial_t \alpha = -2\alpha K$$

Important for strong hyperbolicity of evelution PDEs

- Gauge waves  $(c_{\alpha} = \sqrt{2}, \text{ still assuming } \beta^{i} = 0)$
- Important ingredient of 'Moving puncture' approach
- Efficient (no additional overhead)
- Known to break down for collapsing GW spacetimes



### Quasi-maximal slicing

- So-called maximal slicing K = 0 known to behave well
- Because

$$K = -D^i D_i \alpha + K_{ij} K^{ij} \alpha \tag{1}$$

K=0 becomes an elliptic equation for  $\alpha$ 

- Elliptic solver in each time step  $\rightarrow$  slow
- PDE hyperbolicity requires enforcing K = 0 in evolution equations
- · Any numerical error in solving (1) spoils simulation
- · We suggest alternative

$$\partial_t \alpha = -2\alpha K + W$$

where W is given by time derivative of (1)

$$D^{k}D_{k}W - K_{ij}K^{ij}W = -2\alpha K^{ij}D_{i}D_{j}\alpha + \gamma^{ij}\left(\partial_{t}\Gamma_{ij}^{k}\right)\partial_{k}\alpha + \dots$$

- · Still elliptic equation, but (truncation) error does not spoil simulation, only changes gauge
- Suppresses gauge waves, hyperbolicity of  $1 + \log$  slicing unchanged

3. Navigation in the vacuum spacetime

## Gauge-invariant description of vacuum collapse

- · Vacuum Metric + Riemann=Weyl (+ derivatives)
- Simplest scalar: Kretschmann  $I_K = R^{\mu 
  u 
  ho \sigma} R_{\mu 
  u 
  ho \sigma}$

· Axisymmetry 
$$-\xi_{\mu} \equiv (\partial/\partial\phi)^{\mu}, \rho \equiv (\xi^{\mu}\xi_{\mu})^{1/2}$$

- Additional scalars:
  - $-\eta \equiv 
    ho^{,\mu} 
    ho_{,\mu}$  (vanishes at the axis)
  - $-\zeta \equiv (1-\eta)/\rho^2$
- · In the equatorial plane:
  - $-\eta \rightarrow 0$  at settled AH
  - Schwarzschild has  $\eta = 1 2m/\rho$
- · On the axis:
  - $-I_K=12\zeta^2$ , also  $\zeta=2\Psi_2$
  - Only one nonzero Riemann component



 $M_{\bar{\rho}}$  along the x-axis at times  $t = \{0, 50, 100\}$  (thin to thick).



#### Brill initial data geometry

#### (Additional material for discussion)

Geometry of the initial slice with Brill initial data illustrated by the values of spacetime invariants.

The Brill initial data with  $\sigma=1, A=-3.6$  have  $K_{ij}=0$  and the GW 'seed' appears in  $\gamma_{ij}$ . This can be seen in the top plots — the initial  $\gamma_{ij}$  makes  $\rho$  non-monotonous and  $\eta=0$  where  $\partial_i \rho$  vanishes.

At larger coordinate radii the spacetime resembles the Schwarzschild geometry and  $\zeta$  and  $I_K$  become approximately spherically symmetric.

## 4. Results



#### **Evolution of Brill initial data**



Conformal diagrams for the equatorial plane of the spacetimes produced by evolving the Brill waves.

The amplitudes are  $A = \{4.0, 4.6, 4.8, 5.25\}$  for, respectively top left, top right, bottom left and bottom right. The top two spacetimes are subcritical, while the bottom two are super-critical, as seen from the presence of an event horizon. The color denotes the value of n.

Note the range the quantity  $\eta$  spans: for the spherically symmetric sub-critical spacetimes of [Choptuik93] it stays between 0.4 and 1.



**Figure 5.** Formation of the event horizon for A=5 Brill waves, zero shift. It is constructed by evolving the apparent horizon section from the t=25 slice as a null surface back in time. Left: solid lines show cross-sections of the event horizon in the x-z plane at simulation times  $t=\{2,3,\cdots,14\}$  (inner to outer). Dashed lines show the apparent horizon at time t=10 (when it first appears) and t=14. At later times both horizons cannot be distinguished in this plot. Right: the event horizon as a surface in x-z-t coordinates. When it first appears it is not smooth at the equator, which is represented by the x coordinate in this plot. It remains non-smooth until the radial null geodesic (dashed line in the z=0 plane) enters the event horizon as its generator (dotted line).

#### Bifurcation of echoes and AHs

- Massless scalar field is known to have DSS near-critical spacetimes.
- $\cdot$  GW  $\implies$  prohibited spherical symmetry
- Observation: Generic axisymmetric and plane-symmetric vacuum critical collapse leads to 2 'centers' [Hilditch2017]
- Single mass  $\rightarrow$  (mass, separation, velocity)
- Limitation: MOTS searched during post-processing in saved 2D data
- Near-critical evolution leads to two black holes. Right: MOTS for different ID families top left: TA $_+$  A =  $\overline{1.3008075}$ , t = 20.75;

top right:  $TA_{-}A = -\overline{1.22436524}$ , t = 26; bottom: Brill<sub>+</sub> A = 4.698, t = 20.5







## Scaling (curvature)

- · No apparent horizons for subcritical evolution
- Curvature invariants provide scale, e.g.  $|I_K|^{-1/4}$
- · Extremes appear on symmetry axis
- Extremes form repeating 'echoes'
- More and stronger echoes appear closer to  $\ensuremath{\mbox{\sc A}}_*$
- Scaling used as DSS indicator
- · No universal slope observed



## Scaling (AH mass)

- · Apparent horizon is more involved
- Needs 2D data its mass changes fast fist limited data for post-processing → approximate M<sub>AH</sub>
- · Slicing-dependent
- · Bifurcation



FIGURE 12.14: Apparent horizon mass scaling for different ID families. Plotted is the mass  $M_{\rm AH}$  of the earliest AH located in each simulation. The sharp drop in the TA+ and Brill+ curves corresponds to the appearance of pairs of "off-center" horizons, where we show the mass of one horizon in the pair.

#### Discrete self-symmetry?

- Massless scalar field (right plot) is known to have DSS near-critical spacetimes.
- With prohibited spherical symmetry axisymmetric and plane-symmetric vacuum critical collapse leads to 2 'centers'
- Subcritical evolution forms 'bifurcated' curvature extremes
- Echoes in the curvature invariant  $\zeta$  between different collapse scenarios.
- Since its extrema span several orders of magnitude, we plot contours of a dimensionless (but coordinate-dependent) quantity  $(\tau \tau_*)^2 \zeta$  in the t-z plane.
- A DSS near-critical massless scalar-field collapse in the right panel.

Left:  $TA_{+} A = \overline{1.30080828}, \tau_{*} = 3.88\sigma$ 

Center: Brill\_ $A = 3.5090625, \tau_* = 5.9\sigma$ 



#### Universality of curvature extremes

- Observers in echoes see self-similar echoes
  - Appropriately scaled experience

$$\zeta_0 = <$$
scale $>^2 \zeta$ ,  $\tau_0 = \tau / <$ scale $>$ 





#### **Conclusions**

- Even with axisymmetry near critical vacuum collapse simulations are still hard
- · Spacetime curvature is more severe then for scalar field case
- We observe 'local' self-similarity of curvature extremes (echoes) in subcritical spacetimes
- Scaling does not seem universal, slopes are different between ID families
- More work needed

References

#### References

[Abrahams1993] A. M. Abrahams and C. R. Evans, Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse, Phys. Rev. Lett. 70, 2980 (1993)

[Abrahams1994] A. M. Abrahams and C. R. Evans, Universality in axisymmetric vacuum collapse, Phys. Rev. D 49, 3998 (1994)

[Alcubierre2000] M. Alcubierre, G. Allen, B. Brügmann, G. Lanfermann, E. Seidel, W.-M. Suen, and M. Tobias, *Gravitational collapse of gravitational waves in 3D numerical relativity*, Phys. Rev. D **61**, 041501(R) (2000)

[Baumgarte1998] T. W. Baumgarte and S. L. Shapiro, On the numerical integration of einstein's field equations, Phys. Rev. D 59, 024007 (1998)

[CactusCode2012] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, *The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics*, Class. Quantum Grav. 29, 115001 (2012)

[Choptuik1993] M. W. Choptuik, Universality and Scaling in Gravitational Collapse of a Massless Scalar Field, Phys. Rev. Lett. **70**, 9 (1993)

[Eppley1977] K. Eppley, Evolution of time-symmetric gravitational waves: Initial data and apparent horizons, Phys. Rev. D 16, 1609 (1977)

[Garfinkle2001] D. Garfinkle and G. C. Duncan, Numerical evolution of Brill waves, Phys. Rev. D 63, 044011 (2001)

[Gundlach1999] C. Gundlach, *Critical phenomena in gravitational collapse*, Living Rev. Relativity **2**, 4 ( 1999)

[Hilditch2013] D. Hilditch, T. W. Baumgarte, A. Weyhausen, T. Dietrich, B. Brügmann, P. J. Montero, and E. Müller, *Collapse of nonlinear gravitational waves in moving-puncture coordinates*, Phys. Rev. D **88**, 103009 (2013)

[Hilditch2016] D. Hilditch, A. Weyhausen, and B. Brügmann, *Pseudospectral method for gravitational wave collapse*, Phys. Rev. D **93**, 063006 (2016)

[Hilditch2017] D. Hilditch, A. Weyhausen, and B. Brügmann, Evolutions of centered Brill waves with a pseudospectral method. Phys. Rev. D 96, 104051 (2017)

[Hilditch2019] T. W. Baumgarte, C. Gundlach, and D. Hilditch, Critical Phenomena in the Gravitational Collapse of Electromagnetic Waves, Phys. Rev. Lett. 123, 171103 (2019) [Khirnov2018] A. Khirnov and T. Ledvinka, Slicing conditions for axisymmetric gravitational collapse of Brill waves, Class.

Quantum Grav. 35, 215003 (2018)

[Ledvinka2021] T. Ledvinka and A. Khirnov, Universality of Curvature Invariants in Critical Vacuum Gravitational Collapse Phys. Rev. Lett. 127, 011104 (2021).

[Pretorius2006] F. Pretorius and M. W. Choptuik, Adaptive mesh refinement for coupled elliptic-hyperbolic systems, J. of Comput. Phys. 218, 246 (2006)

[Puerrer2005] M. Pürrer, S. Husa, and P. C. Aichelburg, News from critical collapse; Bondi mass, tails, and quasinormal

modes, Phys. Rev. D 71, 104005 (2005) [Rinne2008] O. Rinne, Constrained evolution in axisymmetry and the gravitational collapse of prolate Brill waves, Class.

Ouantum Grav. 25, 135009 (2008)

[Sorkin2011] E. Sorkin, On critical collapse of gravitational waves, Class. Quantum Grav. 28, 025011 (2011)

[Shibata1995] M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D **52**, 5428 (1995)

[Pfeiffer2005] H. P. Pfeiffer and J. W. York, Uniqueness and Nonuniqueness in the Einstein Constraints, Phys. rev. Lett. 95, 091101 (2005)

[Stephani2003] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein's field equations: 2nd ed. (Cambridge Univ. Press, Cambridge, 2003)

[Weber1957] J. Weber and J. A. Wheeler, Reality of the Cylindrical Gravitational Waves of Einstein and Rosen, Rev. Mod. Phys. 29, 509 (1957)

## Thank you