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Introduction

- Massless scalar field @ evolution [Choptuik1993]
- Einstein gravity provides arena Ggp[gca] = 87 Tap[P]
- Spherical symmetry + Numerical solution

- Various initial data (ID) families, varying ‘strength’ p
- Possible outcomes: Black hole or empty spacetime
- Fine-tuning ID[p] in-between these outcomes — p.
- Surprise: For massless @ initial data ®o[p] provide

Mgy ~ |p — p.|”

- Universality — « for any initial data
- Discrete self-similarity — near p. we see ‘echoes’

- Various matter models lead to similar behavior
with specific v (see [Gundlach1999])
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Introduction (continued)

- Gravitational waves (GW) instead of matter
(see [Abrahams1993] [Abrahams1994] [Alcubierre2000] [Garfinkle2001] [Rinne2008]
[Sorkin2011] [Hilditch2013] [Hilditch2017] [Khirnov2018] [Ledvinka2021])
- Spherical symmetry no longer possible (in 3+1D)
— even more demanding computations
- Hard to navigate in dynamic vacuum spacetime
- Larger space of outcomes (e.g. several BHs)
- Early results hard to reproduce by ‘BBH merger codes’

- But recent results show that
— ‘moving puncture’ gauge not working
(and has to be improved)
— off-center curvature maxima observed on the symmetry axis
— no universal v observed

- 2021 — universality and partial self-similarity identified
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Evolution equations

- 3+1 splitting of spacetime into t = const. hypersurfaces ¥
- Each X is 3D manifold with metric ~;

- Its embedding into 4D spacetime yields
— lapse « and shift 8, unit normal n’

) time

— extrinsic curvature Kj; ﬁﬁ
- Standard BSSN equations

= = {7 = dety;j, 7 = 771/3%.}
~ \
— Ky = {K =tk Ay = v~ (K - 1K) } ﬁ

— ' =T}, as independent field
- Initially we used 1+log (Bona-Masso, moving puncture) slicing
- No shift (8" = 0)

- Evolution equations (1T-2D approach) 8;U = F(U, d,U, ;U)
— with U = [log v, &, %j, K, A, ]

space
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Brill initial data

- Time symmetric Kj = 0,
yidx'dx = o [29(dr? + r’d6?) + r sin? 0dy?]
- Deformation of the initial slice determined by

Nl 2
q(x)_A?e o7 sin” 6

- A=0 = Minkowski spacetime

Mapmlo
N

- Hamilton constraint =

]
Ay + " (9ppq + 02q) 1 = 0

v 2
© Maom = %d&
- A>0andA < 0 are different

-5 0
- Why Mapm(A) — oo see [Eppley77]
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Time-asymmetric initial data 0
- Time asymmetric 4; = 0
o 15
— inspired by [Abrahams1994]
- Complementary to Brill ID
- Deformation of the initial slice determined by \%1 0
<
_ 2 2 =
Kp(x',t =0) = A;(a —r)e % sin20
- Hamilton and momentum constraints 0.5
= ¢, K, and K%,
- A=0 = Minkowski spacetime
* Two branches of M(A) dependence 0%% 10 05 00 05 10 15

—we use e.g. A = —1.1for upper branch A
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Slicing conditions
- 1+ log (Bona-Masso, generalized harmonic) slicing - Gauge waves (co = v/2, still assuming 8' = 0)

S = —2aK - Important ingredient of ‘Moving puncture’ approach
- Efficient (no additional overhead)

- Important for strong hyperbolicity of evelution PDEs | Known to break down for collapsing GW spacetimes
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Quasi-maximal slicing
- So-called maximal slicing K = 0 known to behave well
- Because _ i
K=—-D'Dia + K;/K’joe (1)
K = 0 becomes an elliptic equation for a

- Elliptic solver in each time step — slow
- PDE hyperbolicity requires enforcing K = 0 in evolution equations
- Any numerical error in solving (1) spoils simulation
- We suggest alternative

O = —2aK + W

where W is given by time derivative of (1)
D* DWW — KiK' W = —2aK"DiDjor + 4/ (atr,’;) B + ...

- Still elliptic equation, but (truncation) error does not spoil simulation, only changes gauge

- Suppresses gauge waves, hyperbolicity of 1+ log slicing unchanged
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Gauge-invariant description of vacuum collapse

- Vacuum — Metric + Riemann=Weyl (+ derivatives)
- Simplest scalar: Kretschmann Ix = R*?7R v pe
* Axisymmetry — &, = (0/9¢), p = (5“5#)1/2 1.50

- Additional scalars: I I ! ! !
—n = p*p,, (vanishes at the axis) 1.25 | -
—¢=0-n)/p S 1.00 F -

- In the equatorial plane: = A
—n — 0 at settled AH 0.75 \/\/ 1 ~=p —N— =
— Schwarzschild hasn =1-2m/p 0.50 ‘ | | \ | | | |

- On the axis: 10 20 30 40 50 607
— Ik = 12¢% also ¢ = 2w, M along the x-axis at times ¢ = {0, 50, 100} (thin to thick).

— Only one nonzero Riemann component
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Brill initial data geometry

(Additional material for discussion)

Geometry of the initial slice with Brill initial data illustrated
by the values of spacetime invariants.

The Brill initial data with o = 1,A = —3.6 have K;; = 0 and
the GW ‘seed’ appears in ~;. This can be seen in the top plots
— the initial ~; makes p non-monotonous and n = 0 where
O;p vanishes.

At larger coordinate radii the spacetime resembles the
Schwarzschild geometry and ¢ and Ix become approximately
spherically symmetric.
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What we expect: Compactified diagrams of massless spherically symmetric near-critical spacetime
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Evolution of Brill initial data

Conformal diagrams for the equatorial
plane of the spacetimes produced by
evolving the Brill waves.

The amplitudes are A = {4.0,4.6,4.8,5.25}
for, respectively top left, top right, bottom
left and bottom right. The top two
spacetimes are subcritical, while the
bottom two are super-critical, as seen
from the presence of an event horizon.
The color denotes the value of .

Note the range the quantity n spans:

for the spherically symmetric sub-critical
spacetimes of [Choptuik93] it stays
between 0.4 and 1.
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Figure 5. Formation of the event horizon for A =35 Brill waves, zero shift. It is
constructed by evolving the apparent horizon section from the # = 25 slice as a null
surface back in time. Left: solid lines show cross-sections of the event horizon in the
x — z plane at simulation times 7 = {2,3,-- - , 14} (inner to outer). Dashed lines show
the apparent horizon at time ¢ = 10 (when it first appears) and ¢ = 14. At later times
both horizons cannot be distinguished in this plot. Right: the event horizon as a surface
in x — z — ¢ coordinates. When it first appears it is not smooth at the equator, which
is represented by the x coordinate in this plot. It remains non-smooth until the radial
null geodesic (dashed line in the z = 0 plane) enters the event horizon as its generator
(dotted line).
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. . 010 \ / —
Bifurcation of echoes and AHs ~_ . )
0.05
- Massless scalar field is known to have DSS
near-critical spacetimes. W 0007 w007
- GW = prohibited spherical symmetry ~0.05 o
- Observation: ngerlc aX|sym'rr?etr|c and —o104¢ N L_/_\)
plane-symmetrfc yacuum critical collapse leads 005 om0 obs o o o
to 2 ‘centers’ [Hilditch2017] xlo xlo
- Single mass — (mass, separation, velocity) 04
- Limitation: MOTS searched during 0 / \\
post-processing in saved 2D data TN /
- Near-critical evolution leads to two black holes. ¥ o0
Right: MOTS for different ID families
top left: TAL A = 1.3008075, t = 20.75; -02 ( >
top right: TAL A = —1.22436524, t = 26; e
-0.4 T T T

bottom: Brilly A = 4.698,t = 20.5 T 06 -04 —02 00 02 04 06
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Scaling (curvature)

6 o TA A0
N t hori fi bcritical evoluti T Taaso
o0 apparent horizons for subcritical evolution % Brill A>0
- Curvature invariants provide scale, e.g. || ~"/* 5l ——o—— Brill A<0
- Extremes appear on symmetry axis §
M
- Extremes form repeating ‘echoes’ ';
=4
- More and stronger echoes appear closer to A, é"
- Scaling used as DSS indicator %
+ No universal slope observed 8 3
Ve
0’/'
-
2

2 4 6 8 10 12 14
—log |A-A*|
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. 0.0 4 ==7A 4
Scaling (AH mass) - /
_0.5 4 =+ mill:
- Apparent horizon is more involved —¥— Bull- / A
- Needs 2D data -1.0 —
its mass changes fast fist . /8"
limited data for post-processing \E -15 o
—s approximate May =
8.8 =7y -2.0 M !
- Slicing-dependent 9 : XV -/
- Bifurcation 25 I
-3.0 1
_35 .’//\‘J
16 -14  -12  -10 -8 -6 -4 =)

log|A - A,|

|
FIGURE 12.14: Apparent horizon mass scaling for different ID families. Plotted is the mass M 5

of the earliest AH located in each simulation. The sharp drop in the TA+ and Brill+ curves
corresponds to the appearance of pairs of “off-center” horizons, where we show the mass of
one horizon in the pair.
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Discrete self-symmetry?

- Massless scalar field (right plot) is known to have DSS
near-critical spacetimes.

- With prohibited spherical symmetry axisymmetric and
plane-symmetric vacuum critical collapse leads to 2
‘centers’

- Subcritical evolution forms ‘bifurcated’ curvature
extremes

- Echoes in the curvature invariant ¢ between different
collapse scenarios.

- Since its extrema span several orders of magnitude, we
plot contours of a dimensionless (but
coordinate-dependent) quantity (7 — 7. )¢ in the t-z
plane.

- A DSS near-critical massless scalar-field collapse in the
right panel.
Left: TA, A =1.30080828, 7. = 3.88¢
Center: Brill _LA = 3.5090625, 7« = 5.90
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Universality of curvature extremes

20 800
- Observers in echoes see self-similar echoes 400
- Appropriately scaled experience " 0
Co =<scale>? ¢, 70 = 7/ <scale>
16
14
b —
10
[ —— Echo 3 - - - - TA(-1.22439)
—gftemmrs Echo4 = \J - Brill(4.6965) ] 8
{ ooeceaooso Echo 5 : i Brill(-3.5090625 1 |
-3 -2 -1 0 1 2 6......:::::::.
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Conclusions

- Even with axisymmetry near critical vacuum collapse simulations
are still hard

- Spacetime curvature is more severe then for scalar field case

- We observe ‘local’ self-similarity of curvature extremes (echoes) in
subcritical spacetimes

- Scaling does not seem universal, slopes are different between 1D
families

- More work needed
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