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Motivations for the work

Gravitational waves allow to probe the nature of compact objects and to search for new physics

Proca stars BHs with scalar hair Fuzzballs

Exotic
Compact 
Objects . . . Boson stars

The actual paradigm is that an astrophysical compact object, which is hevier than few solar 
masses, is a Black Hole (BH).

Wormholes

Extentions of General RelativityExotic matter sources

Main Idea: Build a coherent waveform for the inspiral of boson star binaries and test its ability to 
constrain their fundamental properties with observations from current and future interferometers

Work in collaboration with:       Costantino Pacilio (Sapienza University of Rome),
Andrea Maselli (GSSI Institute, L’Aquila), 
Paolo Pani (Sapienza University of Rome) 



Properties of Boson Stars

Boson stars are solutions of the Einstein gravity, minimally coupled to a complex scalar field:

𝐿 = −
1

2
𝑔𝜇𝜈𝜙,𝜇

∗ 𝜙,𝜈 −
1

2
𝑉 𝜙 2 𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏 ,

1

−𝑔
𝜕𝑎 −𝑔𝑔𝑎𝑏𝜕𝑏𝜙 =

𝑑𝑉( 𝜙 2)

𝑑 𝜙 2 𝜙

𝑉 𝜙 2 = 𝑚2 𝜙 2 +
𝜆

2
𝜙 4 𝜆 ≫ 𝑚2

𝑀𝑚𝑎𝑥~0.06
𝜆
1
2

𝑚2𝑀𝑝
3

Properties of strongly self-interacting BS with quartic coupling

𝑀𝐵 reduced coupling

Non-zero tidal deformability Λ and spin-induced multipole moments 𝑀2, 𝑆3…

Smaller compactness compared to BHs: 𝐶𝐵𝑆 ∼ 0.16 - 𝐶𝐵𝐻 = 0.5

Eqns.

3D energy-density
plot of a boson star



We want a coherent Post-Newtonian expanded waveform model in 𝑣 = 𝜋𝑀𝑓
1

3 which 
consistently includes the corrections due to finite size effects: 

A coherent BS inspiral waveform model
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Multipole moments can be defined in General Relativity for asymptotically flat spacetimes
(Geroch 1970, Hansen 1974, Thorne 1990…):  

Multipole moments in Newtonian theory  Flatness of the Euclidean space

Quadrupole moment of boson stars (2PN)

Stationary axysimmetric spacetime ⇒
scalar mass moments M0, M2…  and current moments S1, S3… 

for a Kerr black hole 𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀𝑙+1(𝑖𝜒)𝑙 𝜒 =
𝐽

𝑀2 , 𝑀 = 𝑀0

Not true for a generic compact object!
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moment



The plot shows 𝜅2 = −
𝑀2

𝜒2𝑀3 as a function of the dimensionless spin 𝜒 for different BS masses:

The multipolar structure of 
fast rotating boson stars:  
Massimo Vaglio, Costantino 
Pacilio, Andrea Maselli, Paolo 
Pani, arXiv:2203.07442 (2022)

The expression for the quadrupole moment can be obtained as M2 = −𝜅2 𝜒,𝑀/𝑀𝐵 𝜒2𝑀3

Quadrupole moment of boson stars (2PN)
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The tidal deformability for boson stars can be obtained exploiting the relation:

𝜆𝑇 is the tidal deformability

Tidal deformability of boson stars (5PN)
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The presence of the companion induces a quadrupole moment in the star as response to 
the external tidal field: 
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To test our waveform, we performed parameter estimation on injected signals

Parameter estimation - Setting

Ԧ𝜃 = ℳ, 𝑞, 𝜒1, 𝜒1, 𝑀𝐵

In the analysis we fixed the extrinsic parameters: 

and marginalize over: 

We considered only spins alligned or antialligned with 𝐿:

𝒅𝑳 Luminosity distance
𝒕𝒄, 𝝓𝒄 time and phase at coalescence

𝒓𝒂, 𝒅𝒆𝒄 sky localization angles
𝜾 system inclination angle 
𝝍 wave polarization angle

𝑝 Ԧ𝜃 𝑑 =
𝜋 Ԧ𝜃 ℒ(𝑑| Ԧ𝜃,ℋ)

𝑑𝑚𝜃𝜋 Ԧ𝜃 ℒ(𝑑| Ԧ𝜃,ℋ)
posterior

prior likelyhood

evidence

ℳ = 𝑀1𝑀2

3
5/ 𝑀1 +𝑀2

1
5 𝑞 = 𝑀2/𝑀1 𝜒1/2 = (Ԧ𝐽1/2/𝑀1/2

2 ) ⋅ 𝐿 𝑀𝐵 = (𝜆
1

2/𝑚2) 𝑀𝑝
3



Injection and recovery of a signal with 
the Einstein Telescope  (𝑆𝑁𝑅 = 130):

- ℳ = 5𝑀⨀

- 𝑞 = 0.8
- 𝑀𝐵 = 115𝑀⨀

- 𝜒1 = 0.05
- 𝜒2 = 0.35
- 𝑓𝑅𝑜𝑐ℎ𝑒 = 127𝐻𝑧

We used the BILBY Bayesian Inference Library (Ashton, Gregory et 
al.,The Astrophysical Journal Supplement Series, voln.241,2019). 

Parameter estimation - Results



Parameter estimation - Results

Injection and recovery of a signal with 
the Einstein Telescope  (𝑆𝑁𝑅 = 130):

- ℳ = 10𝑀⨀

- 𝑞 = 0.8
- 𝑀𝐵 = 255𝑀⨀

- 𝜒1 = 0.05
- 𝜒2 = 0.35
- 𝒇𝑹𝒐𝒄𝒉𝒆 = 𝟓𝟎𝑯𝒛



With ET at SNR ~ 100 it is possible to constraint 𝑀𝐵 with ∼1% accuracy:

We developed a coherent waveform template for the inspiral of rotating self-interacting BSs in 
the strong coupling limit :

Conclusions and perspectives

There is a strong correlation between the mass ratio  and the fundamental coupling 𝑀𝐵 = 𝜆/𝑚2. 

Next steps and future works:

Due to the low cutoff frequency, it is difficult to constraint binaries heavier than ~10𝑀⨀. 

Generalization to other BS’s models: change 𝑉 𝜙 2 , Vector BSs, universal relations…

Model selection between different boson star models

That’s why we need complete inspiral-merger-ringdown templates!







Backup Slide 1

Injection and recovery of a simulated signal 
with, 𝛽1 = 0.051, 𝛽2 = 0.041,𝑀𝐵 = 250.

𝛽 = 𝑀/𝑀𝐵



Backup Slide 1

Injection and recovery of a simulated signal 
with ℳ = 10, 𝑞 = 0.8 and 𝜒1 = 0.05, 𝜒2 =
0.35,𝑀𝐵 = 250.



Maximum mass and ergoregions

Increasing the vaue of the winding

number 𝑠 =
𝜆

𝑚

−1

× 𝑛𝑟 , it is

possible to exceed significantly the
non-spinning maximum mass limit
𝑀 ∼ 0.06𝑀𝐵

The model allows for configurations featuring
ergoregions in the (linearly) stable branch.

The multipolar structure of fast rotating boson stars:  Massimo Vaglio, 
Costantino Pacilio, Andrea Maselli, Paolo Pani, arXiv:2203.07442 (2022)



The multipolar structure affects the dynamics of binary systems and their gravitational wave emission

The study of multipole moments can lead to the discovery of interesting properties (es: Love-Q relations)

Inspiral Merger Ringdown

ℎ ∼ 𝒜 𝑓 𝑒𝑖(𝜓𝐵𝐻 𝑓 +𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑖𝑧𝑒 𝑐𝑜𝑟𝑟 )E.g.

PN expanded waveform

Gravitational-wave detectors as particle-physics laboratories: Constraining scalar 
interactions with a coherent inspiral model of boson star binaries, Costantino Pacilio, 
Massimo Vaglio, Andrea Maselli, Paolo Pani. arXiv:2007.05264 (2020)

Motivations for the work

Stationary axysimmetric spacetime ⇒ scalar mass moments M0, M2…  and current moments S1, S3… 

for a Kerr black hole 𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀𝑙+1(𝑖𝜒)𝑙 𝜒 =
𝐽

𝑀2 ,where 𝑀 = 𝑀0



To have stationarity and axysimmetry the field must satisfy:

azimuthal winding number

frequency

𝜙 = 𝜙0 𝑟, 𝜃 𝑒𝑖 𝑛𝑟𝜑−Ω𝑡

Families of (rotating) Boson Stars

Different families of BSs, correspond to different potenatials in the lagrangian:

- Mini BSs

- Massive BSs

- Solitonic BSs

𝑉 𝜙 2 = 𝑚2 𝜙 2

𝑉 𝜙 2 = 𝑚2 𝜙 2 + 𝜆 𝜙 4
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𝑀𝑝
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𝑚𝜎2

𝐽 = 𝑛𝑟𝑁 The angular momentum is quantized!

(Neutron Stars: Equation Of State          Boson Stars: Self-interactions 𝑉 𝜙 2 )

Normalized energy-density of a 
BS in a transversal section



Universal Relations for Boson Stars?

I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, 
Gravitational Waves and Fundamental Physics - Kent Yagi and Nicolàs Yunes

Neutron Stars feature simple relations linking their moment of inertia, the tidal deformability 
and the quadrupole moment which do not depend sensitively on the star’s internal structure. 

We found the reduced quadrupole and octupole moments are simply connected to the tidal
deformability of the boson star



Universal Relations for Boson Stars?

The relation between 𝜅2 and 𝜎3 appears remarkably to be independent on the spin 𝜒

These relations have many applications and are especially useful to break degeneracies 
among parameters that characterize gravitational waveforms. 



Integration and multipole moments

Coordinates 𝑞 = 𝑟/(1 + 𝑟), 𝜇 = cos 𝜃 𝑞, 𝜇  ∈ 0,1 Compactified

Grid 𝑛𝑞 × 𝑛𝜇 Fixed equally spaced

Derivatives − Five points central

Integration − Trapezoidal rule

𝜌(𝑟, 𝜇) = 

𝑛=0

∞

−2
𝑀2𝑛

𝑟2𝑛+1
𝑃2𝑛 𝜇 + higher orders 𝜔(𝑟, 𝜇 ) = 
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∞

−
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𝑆2𝑛−1
𝑟2𝑛+1

𝑃2𝑛−1
1 𝜇

sin 𝜃
+ higher orders

Mass and current moments {M0, M2… }, {S1, S3… } can be read off:



The dashed lines correspond to the values reported in F. D. Ryan, Phys. Rev. D 55, 6081 (1997)

Consistency with previous results

Our findings about the quadrupole moments agree with previous results, when using the same grid 𝑛𝑞 ×

𝑛𝜇 = 1600 × 160, but there is a deviation when 𝑛𝜇 is increased up to the saturation value 𝑛𝜇 ∼ 20000.



Solution!Initial 𝑓

New 𝑓

Source 
𝑆

𝑛

𝑛 + 1

Evaluate Integrate

𝑓 𝑥 = න𝐺 𝑥, 𝑥′ 𝑆 𝑓, 𝜕𝑓, 𝑥′ 𝑑𝑥′

𝑟′, 𝜃′

𝜌, 𝛾, 𝜔, 𝛼

The equations can be solved iteratively:

Self consistent field method

Automatically satisfies aymptotic flatness conditions for reasonable sources!
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Es:



Dependence on the integration grid

𝜒 = 0.1 𝜒 = 0.075Due to numerical erros, we found a 

non-zero value of 𝑀2
(𝑜𝑓𝑓)

≡ 𝑀2 𝜒 = 0

In the plots (top panels):

𝑘2
(𝑟𝑎𝑤)

= 𝑀2
(𝑟𝑎𝑤)

/(𝜒2𝑀3)

𝑘2
(𝑜𝑓𝑓)

= 𝑀2
(𝑜𝑓𝑓)

/(𝜒2𝑀3)

and their percentage difference (bottom 
panels), for fixed 𝑀 = 0.04𝑀𝐵 , 𝑛𝑞 =

1600 and two values of 𝜒. 

Extracting the quadrupole moments for 
slow spinning configurations requires
more angular precision.  



Normalized energy-density of a BS in a 
transversal section

Energy-density plot



The scalar field in the inner region satisfies: 

Substituting the metric coefficients:

But in the tail region

Rotating BSs are shaped like doughnuts!r

−𝑔𝑡𝑡Ω2 + 2𝑔𝑡𝜑Ω𝑠 − 𝑔𝜑𝜑𝑠2 −𝑚2 𝜙 − 𝜆 𝜙 2𝜙 = 0

𝜙 2 = 𝑀𝑎𝑥 0, −𝑔𝑡𝑡Ω2 + 2𝑔𝑡𝜑Ω𝑠 − 𝑔𝜑𝜑𝑠2 −𝑚2 /𝜆

𝜙 2 = 𝑀𝑎𝑥 0,
1

𝜆

Ω − 𝑠𝜔 2

𝑒𝛾+𝜌
−

𝑒𝛾−𝜌𝑠2

𝑟2 sin 𝜃2
−𝑚2

The metric can be expressed in the Lewis-Papapetrou coordinates:

𝑑𝑠2 = −𝑒𝛾+𝜌𝑑𝑡2 + 𝑒2𝛼 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑒𝛾−𝜌𝑟2 sin 𝜃2 𝑑𝜙 − 𝜔𝑑𝑡 2

𝜙 ∼ 0 ⇒

Backup Slide – Scalar field



It is possible to get rid of the coupling constants trought the following rescalings:

Consequently we have the following change in the relevant expressions: 

Physical quantities can be derived multiplying the rescaled ones by:
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Backup Slide – Coordinate rescaling



where 𝜇 = cos 𝜃 and I removed the ‘tilde’. 

The Einstein equations can be rewritten as:

Automatically satisfies aymptotic flatness conditions for reasonable sources!

The first can be easily inverted:

△ 𝜌𝑒
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Backup Slide – The equations



Expanding the 1/ 𝑟 − 𝑟′ term and repeating for the other equations:

𝜌 𝑟, 𝜇 = −𝑒−𝛾/2
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Backup Slide – The equations



The sources are complicated expressions of the the metric functions and their derivatives :

where: 𝑣 =
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1

2
𝛾,𝑟
2 −

1 − 𝜇2

2𝑟2
𝛾,𝜇
2

𝑆𝜔 𝑟, 𝜇 = 𝑒𝛾/2−𝜌 ቆ

ቇ

−16𝜋𝑒2𝛼+𝜌
𝑣 𝜖 + 𝑃

1 − 𝑣2 𝑟 sin 𝜃
+ 𝜔 ቈ



−8𝜋𝑒2𝛼
1 + 𝑣2 𝜖 + 2𝑣2𝑃

1 − 𝑣2
−
1

𝑟
2𝜌,𝑟 +

1

2
𝛾,𝑟 +

𝜇

𝑟2
2𝜌,𝜇 +

1

2
𝛾,𝜇 + 𝜌,𝑟

2 −
1

4
𝛾,𝑟
2

+
1 − 𝜇2

𝑟2
𝜌,𝜇
2 −

1

4
𝛾,𝜇
2 − 𝑟2 1 − 𝜇2 𝑒−2𝜌 𝜔,𝑟

2 +
1 − 𝜇2

𝑟2
𝜔,𝜇
2

is the proper velocity with respect to the ZAMO

Backup Slide – The equations



Start with some guess for 
the metric: (ρ,ϒ,ω, α)

Integrate to  obtain new 
values of ρ,ϒ,ω and α

Choose (𝑀𝑓𝑖𝑛𝑎𝑙 , 𝜒𝑓𝑖𝑛𝑎𝑙)

and assign initial (Ω, 𝑠)

Calculate the sources 𝑆𝜌 𝑆𝛾, 𝑆𝜔,

Change
(Ω, 𝑠) untill 
𝑀, 𝜒 =
(𝑀𝑓𝑖𝑛𝑎𝑙 , 𝜒𝑓𝑖𝑛𝑎𝑙)

Is 𝑀,𝜒 =
(𝑀𝑓𝑖𝑛𝑎𝑙 , 𝜒𝑓𝑖𝑛𝑎𝑙)?

No

Yes

𝑛

𝑛 + 1

1

4
2

6

7-8

3

5

Backup Slide – The algorithm

𝑟

𝜌

Change in the 𝜌 function after the first iterations of the method



Inspiral Merger Ringdown

Binary Boson Star signal

Multipole moments enter in the PN expansion in 𝑣 = 𝜋𝑀𝑓
1

3 of the inspiral signal:

Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral 
model of boson star binaries, Costantino Pacilio, Massimo Vaglio, Andrea Maselli, Paolo Pani. Phys.Rev. D 102 (2020) 8, 083002

𝜓 𝑓 = 𝜓𝐵𝐻 𝑓 + 𝜓𝜅2 𝑓 + 𝜓Λ 𝑓

𝜓𝑘2 = −
75

64

𝜅2
1𝑀1

2𝜒1
2 + 𝜅2

2𝑀2
2𝜒2

2

𝑀1𝑀2
𝜋𝑀𝑡𝑓

−1/3
Leading order

ℎ ∼ 𝒜 𝑓 𝑒𝑖𝜓 𝑓

Reduced Quadrupole



𝑀𝑚𝑎𝑥(𝜒 ∼ 0) ≈ 0.06𝑀𝐵 ≈ 0.06
𝜆

𝑚2 ≈ 0.06
𝜆ℏ

𝑚𝑆
2 𝑀𝑃

3 ≈ 105𝑀⊙ 𝜆ℏ
MeV

𝑚𝑆

2

𝑀𝑚𝑎𝑥 ≈ 0.06 1 + 0.76𝜒2 𝑀𝐵

We want to explore the possibility of constraining the BS coupling with future observations:

⇒

We can cover the whole spectrum of sources for LISA and ET varying 𝜆 and 𝑚𝑠

Backup Slide – Mass scale



We used a Fisher matrix approach and a Post Newtonian expanded waveform to estimate the 
uncertainty with which 𝑀𝐵 can be measured by LISA and ET in the following scenario: 

Backup Slide – Parameter Estimation

𝑄 = −𝜅 𝜒,𝑀/𝑀𝐵 𝜒2𝑀3

The expression for the quadrupole moment as a funtion of mass, spin of the BS:

Ԧ𝜃 = 𝒜, 𝑡𝑐 , 𝜙𝑐 , logℳ , log 𝜂 , 𝜒𝑠, 𝜒𝑎 , 𝑀𝐵

can be used within parameter estimation to measure directly the effective coupling from GWs
observation of BS binaries :

Mass scaleIndividual masses Spins

0.06𝑀𝐵 = ൝
1 − 100𝑀⨀ 𝐸𝑇

104 − 106𝑀⨀ 𝐿𝐼𝑆𝐴
𝑀1, 𝑀2 ∼ 0.05𝑀𝐵 , 0.06𝑀𝐵 𝜒1, 𝜒2 = ൞

(0.1,0)
(0.6,0.3)
(0.9,0.8)



𝒜(𝑓) =
𝑀𝑡

2

𝐷𝐿

𝜋𝜂

30
𝜋𝑀𝑡𝑓

−7/6

𝜓 𝑓 = 𝜓𝐵𝐻 𝑓 + 𝜓𝜅 𝑓 + 𝜓Λ 𝑓

𝜓Λ = −
117

256𝜂
෩Λ 𝜋𝑀𝑡𝑓

5/3

𝜓κ = −
75

64

𝜅1𝑀1
2𝜒1

2 + 𝜅2𝑀2
2𝜒2

2

𝑀1𝑀2
𝜋𝑀𝑡𝑓

−1/3

Post Newtonian expansion in 𝑣 = 𝜋𝑀𝑓
1
3

Newtonian approx

𝜓 𝑓 = 2𝜋𝑓𝑡𝑐 − 𝜙𝑐 −
𝜋

4
+ 𝑣−5 

𝑛=0

7

𝛼𝑛𝑣
𝑛 at 3.5PN

+ quadrupole corrections at 2PN, 3PN and 3.5PN 

+ tidal corrections at 5PN and 6PN Lackey and L. Wade, Phys. 
Rev. D, 91, (2015) 4 043002

C.K. Mishra et.al, Phys. Rev. 
D, 93, 8 (2016), 084054

Krishnendu et.al, Phys. Rev. 
Lett.,119,9 (2017) 091101

Leading order

Backup Slide – The Waveform



𝒬𝒾𝒿 = −𝜆𝑇𝜀𝑖𝑗

෩Λ =
16

13
1 +

12

𝑞

𝑀1
5

𝑀𝑡
5 Λ1 + 1 + 12𝑞

𝑀2
5

𝑀𝑡
5 Λ2

𝑀

𝑀𝐵
=

2

8 𝜋
−0.828 +

20.99

logΛ
−

99.1

log Λ 2 +
149.7

log Λ 3

N. Sennett et al., Phys. Rev. D, 96, 2 (2017 ) 024002

To include the tidal deformability in the waveform we exploited the relation:

where  Λ = 𝜆𝑇/𝑀
5 and 𝜆𝑇 is defined as

Λ will affect the waveform through an effective combination of the values of each BS

Backup Slide – Tidal deformability



ET (𝐷𝐿 = 500 𝑀𝑝𝑐) LISA (𝐷𝐿 = 1 𝐺𝑝𝑐) 

The errors on 𝑀𝐵for ET and LISA are at the percent and sub-percent level in the 
most optimistic configurations: 

Δ𝑀𝐵/𝑀𝐵[%]

Backup Slide – Constraining scalar interactions



An obvious initial guess for ρ,ϒ,ω and α is a solution for a non-spinning BS with the same mass.

This is not the common choice when dealing with spherically symmetric problems! 

In the non-spinning limit one has:

The metric beocmes:

and

𝑑෪𝑠2 = −𝑒2 𝜌 𝑟 +𝛼 𝑟 𝑑 ෩𝑡2 + 𝑒2𝛼 𝑟 𝑑෪𝑟2 +෪𝑟2𝑑𝜃2 +෪𝑟2 sin 𝜃2 𝑑𝜙2

𝑑෪𝑠2 = −𝑒𝛾+𝜌𝑑 ෩𝑡2 + 𝑒2𝛼 𝑑෪𝑟2 + ෪𝑟2𝑑𝜃2 + 𝑒𝛾−𝜌෪𝑟2 sin 𝜃2 𝑑𝜙 − 𝜔𝑑 ǁ𝑡 2

𝜔 → 0 𝛾 ǁ𝑟, 𝜃 , 𝜌 ǁ𝑟, 𝜃 , 𝛼 ǁ𝑟, 𝜃 → 𝛾 ǁ𝑟 , 𝜌 ǁ𝑟 , 𝛼 ǁ𝑟 𝑒𝛾−𝜌 = 𝑒2𝛼

𝑑𝑠2 = −𝑒𝑣 𝑟 𝑑𝑡2 + 𝑒𝑢 𝑟 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin 𝜃2 𝑑𝜙2

Backup Slide – The initial data 



one finds:

Comparing the two metrics:

and dividing term by term:

Finally:

𝑑෪𝑠2 = −𝑒2 𝜌 ǁ𝑟 +𝛼 ǁ𝑟 𝑑 ෩𝑡2 + 𝑒2𝛼 ǁ𝑟 𝑑෪𝑟2 +෪𝑟2𝑑𝜃2 + ෪𝑟2 sin 𝜃2 𝑑𝜙2

𝑑𝑠2 = −𝑒𝑣 𝑟 𝑑𝑡2 + 𝑒𝑢 𝑟 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin 𝜃2 𝑑𝜙2

1)  𝑒2𝛼 𝑟 𝑑෪𝑟2 = 𝑒𝑢 𝑟 𝑑𝑟2 2)  𝑒2𝛼 𝑟 ෪𝑟2 = 𝑟2

𝑑 ǁ𝑟

𝑟
=
𝑒
𝑢 𝑟
2

𝑟
𝑑𝑟 ǁ𝑟 𝑟 = 𝑒𝑥𝑝 න

𝑟0

𝑟 𝑒
𝑢 𝑟′

2

𝑟′
𝑑𝑟′ ⋅ 𝑐

𝛼 ǁ𝑟 = log
𝑟 ǁ𝑟

ǁ𝑟
𝜌 ǁ𝑟 = 𝑣 𝑟 ǁ𝑟 −

1

2
𝛼 ǁ𝑟𝛾 ǁ𝑟 = 𝜌 ǁ𝑟 + 2𝛼 ǁ𝑟

Backup Slide – The initial data 



Correction factors to correctly match the Geroch-Hansen multipole moments

Backup Slide – Multipole moments

𝜌(𝑟, 𝜇) = 

𝑛=0

∞

−2
𝑀2𝑛

𝑟2𝑛+1
𝑃2𝑛 𝜇 + higher orders 𝜔(𝑟, 𝜇 ) = 

𝑛=1

∞

−
2

2𝑛 − 1

𝑆2𝑛−1
𝑟2𝑛+1

𝑃2𝑛−1
1 𝜇

sin 𝜃
+ higher orders

𝑀2𝑛 =
1

2
න
0

𝑟

𝑑𝑟′ 𝑟′ 2𝑛+2න
0

1

𝑑𝜇′𝑃2𝑛 𝜇′ 𝑆𝜌 𝑟′, 𝜇′ 𝑆2𝑛−1 =
1

4𝑛
න
0

𝑟

𝑑𝑟′ 𝑟′ 2𝑛+2 ×න
0

1

𝑑𝜇′ sin 𝜃′ 𝑃2𝑛−1
1 𝜇′ 𝑆𝜔 𝑟′, 𝜇′

⇒
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