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From Penrose (1964)
Relaxing one (or more) assumptions allows to circumvent the theorem and
obtain regular spacetimes

[Carballo-Rubio et al. (2019)]
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Common assumption: corrections to GR at the ultraviolet scale

lp = A/ % ~ 107 m Planck length

Strong indications of the relevance of quantum gravity effects at infrared scales

e Nontrivial quantum structure of the horizon: Fuzzballathur (2005)]

Firewa”[Almheiri et al. (2013)]

e Nonlocal modifications of QFT at horizon scalelGiddines (2013, 2021)]

e QNMs spectrum
Black hole = quantum harmonic oscillator with A ~ Rs[Maggiore (2008)]
° Corpuscular graVity[DvaIi & Gomez (2013), Dvali et al. (2021, 2022)]
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Standard Cosmological Model: GR + energy content made of baryonic matter
(~5%), dark matter (~ 30%) and dark energy (~ 65 %)

[Verlinde (2016)]: dark matter effects are a manifestation of the competition
between baryonic matter and dark energy degrees of freedom

Schwarzschild-de Sitter solution

Rs: baryonic-matter scale (inner i
horizon) \

L: cosmological scale (outer horizon)

Ro = v/RsL: dark-matter scale

Effective model: GR sourced by an anisotropic fluid encoding long-range

quantum gravity effeCtS[Cadoni et al. (2018-2021)]
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Main idea: use the same (but reversed!) principle adopted for the cosmological
solution to address the singularity problem

Framework: GR + Anisotropic Fluid

Gy =87GT, T =(p+ pL) upty + piguv — (p” — PL) W, W,
Spherical symmetry ds®* = —e*dt? + Mdr? + 2d0?
Equation of State p=—p

e A very simple choice
e Natural connection with dark energy/cosmological constant

e Allows to have a stress-energy tensor invariant under radial Lorentz boosts

and define a spherically symmetric vacuum[Pymnikova (1992)]

Solution:
_e) — e = Ay =1 — Mr(’) M(r) = 47r/ p P dF
0
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Imposing a de Sitter core

To eliminate the singularity: glue together a Schwarzschild patch at great
distances from the center with a de Sitter patch near r ~ 0

2
r Rs
AN %1 AD 1=

The position of the horizons is reversed with respect to the SdS case

Rs: baryonic-matter scale (outer
horizon)

[: “de Sitter” length (inner horizon)

(=R

£ is an additional quantum hair
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infinity

In some models, the hair £ is an UV QG parameter (noncommutative geometry
[Nicolini et al. (2006)] LQG eﬂ:ects[Modesto et al. (2011)] otherS[RoveIIi et al. (2014) ,Frolov (2014)])

Thus considered to be of the order of /p
What's new here? Wider effective perspective where ¢ can take any value

R r ﬂ(y)NyQ fory ~ 0
A(r) = —fﬂ(ﬁ ]
F(y)~y fory —oo
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No horizons (/ > /)

One horizon (/ = /)

Two horizons (/ < /¢)

e {<Rs (£~fp) = Small short-scale QG corrections
e /> Rs = Horizonless compact object
e /~Rs = QG effects at the horizon scale

Extremal model b ~ Rs
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Phase transition and thermodynamic stability

Branch |
Branch Il

""" Schwarzschild

™

Second-order phase transition separates two thermodynamic branches

e Branch Il (£ < Rs): unstable evaporating models (Hawking branch)

e Branch | (¢ ~ Rs): stable remnants

For other interesting thermodynamic features, see
Cadoni, Oi, APS, arXiv:2204.09444
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Observable phenomenology

e Light ring
e QNMs spectrum

e Motion of the S2-star around SgrA*

Example: model with the strongest deviations from Schwarzschild
[Cadoni, De Laurentis, De Martino, Della Monica, Oi, APS, arXiv:2211.11585]

2GMr? _2GM /
(r) (r+12€)3 r>cm oe
With M = Msgea+ at r ~ rso
¢ te N 6Gr24g 1053 S2 Observational data

£~02GM = —— ~107°
r

Xiv:2211.11585
(e.g. £c ~ 0.296 GM) [arXiv ]



Conclusions

Credits: EHT Collaboration Credits: ESO, Gillessen et al.

e The possibility of having IR QG corrections is an alternative
interesting way to resolve the singularity problem

e Deviations from standard phenomenology are hopeless to be
detected in the near future if / < Rg
They are not if £ ~ Rs
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THANKS FOR YOUR ATTENTION!
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