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The classical unavoidability of spacetime singularities

Gravitational collapse in general relativity leads to unavoidable spacetime

singularities[Penrose (1964)]

Very few ingredients

• Validity of Einstein’s equations

• Energy conditions

• Global Hyperbolicity

Relaxing one (or more) assumptions allows to circumvent the theorem and

obtain regular spacetimes[Carballo-Rubio et al. (2019)]
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Common assumption: corrections to GR at the ultraviolet scale

ℓP =

√
ℏG
c3

∼ 10−35 m Planck length

Strong indications of the relevance of quantum gravity effects at infrared scales

• Nontrivial quantum structure of the horizon: Fuzzball[Mathur (2005)],

Firewall[Almheiri et al. (2013)]

• Nonlocal modifications of QFT at horizon scale[Giddings (2013, 2021)]

• QNMs spectrum

Black hole = quantum harmonic oscillator with λ ∼ RS
[Maggiore (2008)]

• Corpuscular gravity[Dvali & Gomez (2013), Dvali et al. (2021, 2022)]
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A lesson from cosmology: the dark matter problem

Standard Cosmological Model: GR + energy content made of baryonic matter

(∼ 5%), dark matter (∼ 30%) and dark energy (∼ 65%)

[Verlinde (2016)]: dark matter effects are a manifestation of the competition

between baryonic matter and dark energy degrees of freedom

Schwarzschild-de Sitter solution

f (r) = 1− RS

r
− r 2

L2

RS: baryonic-matter scale (inner

horizon)

L: cosmological scale (outer horizon)

R0 =
√
RSL: dark-matter scale

Effective model: GR sourced by an anisotropic fluid encoding long-range

quantum gravity effects[Cadoni et al. (2018-2021)]
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Building effective nonsingular black-hole models

Main idea: use the same (but reversed!) principle adopted for the cosmological

solution to address the singularity problem

Framework: GR + Anisotropic Fluid

Gµν = 8πGTµν , Tµν = (ρ+ p⊥) uµuν + p⊥gµν −
(
p∥ − p⊥

)
wµwν

Spherical symmetry ds2 = −eν(r)dt2 + eλ(r)dr 2 + r 2dΩ2

Equation of State p∥ = −ρ

• A very simple choice

• Natural connection with dark energy/cosmological constant

• Allows to have a stress-energy tensor invariant under radial Lorentz boosts

and define a spherically symmetric vacuum[Dymnikova (1992)]

Solution:

−eν(r) = e−λ(r) ≡ A(r) = 1− 2GM(r)

r
, M(r) = 4π

∫ r

0

ρ r̃ 2 dr̃
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Imposing a de Sitter core

To eliminate the singularity: glue together a Schwarzschild patch at great

distances from the center with a de Sitter patch near r ∼ 0

A(r) ∼
r→0

1− r 2

L̂2
A(r) ∼

r→∞
1− RS

r

The position of the horizons is reversed with respect to the SdS case

RS: baryonic-matter scale (outer

horizon)

L̂: “de Sitter” length (inner horizon)

ℓ = R
1/3
S L̂2/3

ℓ is an additional quantum hair

5
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Several models in the literature

• Bardeen model[Bardeen (1968)]

• Dymnikova model[Dymnikova (1992)]

• Hayward model[Hayward (2005)] [First proposed by Poisson & Israel (1988)]

• Gaussian-core model[Nicolini et al. (2006),Modesto et al. (2011)]

• ...

• Model with the strongest deviations from Schwarzschild at

infinity[Lan & Wang (2022), Cadoni, De Laurentis, De Martino, Della Monica, Oi & APS (2022)]

In some models, the hair ℓ is an UV QG parameter (noncommutative geometry
[Nicolini et al. (2006)], LQG effects[Modesto et al. (2011)], others[Rovelli et al. (2014) ,Frolov (2014)])

Thus considered to be of the order of ℓP

What’s new here? Wider effective perspective where ℓ can take any value

A(r) = 1− RS

ℓ
F

( r
ℓ

)  F (y) ∼ y 2 for y ∼ 0

F (y) ∼ 1
y

for y → ∞
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No horizons (ℓ > ℓc)

One horizon (ℓ = ℓc)

Two horizons (ℓ < ℓc)

r

A(r)

• ℓ ≪ RS (ℓ ∼ ℓP) ⇒ Small short-scale QG corrections

• ℓ ≫ RS ⇒ Horizonless compact object

• ℓ ∼ RS ⇒ QG effects at the horizon scale

Extremal model ℓc ∼ RS

7
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Phase transition and thermodynamic stability

Branch I

Branch II

Schwarzschild

rH

TH

rH

C

Second-order phase transition separates two thermodynamic branches

• Branch II (ℓ ≪ RS): unstable evaporating models (Hawking branch)

• Branch I (ℓ ∼ RS): stable remnants

For other interesting thermodynamic features, see

Cadoni, Oi, APS, arXiv:2204.09444
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Observable phenomenology

• Light ring

• QNMs spectrum

• Motion of the S2-star around SgrA∗

Example: model with the strongest deviations from Schwarzschild

[Cadoni, De Laurentis, De Martino, Della Monica, Oi, APS, arXiv:2211.11585]

A(r) = 1− 2GMr 2

(r + ℓ)3
∼

r≫GM
1− 2GM

r
+ 6GM

ℓ

r 2

With M = MSgrA∗ at r ∼ rS2

ℓ ∼ ℓP ⇒ 6GMℓ

r 2
∼ 10−53

ℓ ∼ 0.2GM ⇒ 6GMℓ

r 2
∼ 10−9

(e.g. ℓc ≃ 0.296GM)

⇒

S2 Observational data

ℓ ≤ 0.47GM with 95% C. L.

[arXiv:2211.11585]
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Conclusions

• The possibility of having IR QG corrections is an alternative

interesting way to resolve the singularity problem

• Deviations from standard phenomenology are hopeless to be

detected in the near future if ℓ ≪ RS

They are not if ℓ ∼ RS

THANKS FOR YOUR ATTENTION!

10



Conclusions

• The possibility of having IR QG corrections is an alternative

interesting way to resolve the singularity problem

• Deviations from standard phenomenology are hopeless to be

detected in the near future if ℓ ≪ RS

They are not if ℓ ∼ RS

THANKS FOR YOUR ATTENTION!

10


