Motion of S2 and -bounds on scalar
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Motivation

Constrain an ultralight scalar field cloud around
the supermassive Black Hole (BH), Sagittarius A*, at
the center of the Milky Way using orbital motion of S-
stars.

We will focus on star S2.

We have astrometry (positions in the sky) and
spectroscopy (radial velocity measurements).

Ultralight bosons are possible candidates for Dark

Matter (DM).
DM may cluster around supermassive BHs

Several works used S-stars to obtain upper bounds on the
extended mass around Sgr A*. Credits to S. Gillessen, GRAVITY Coll., Max Planck Institute
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In the limit & << |, the fundamental mode of the field (f =m = 1) is given by (Brito et al. 2015)
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The energy density of the scalar field is:
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p= mhg W2+ 0 (™)

Solving V2 U

calar = 47tp we obtain the scalar potential:
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Corrections to the Newtonian model
(GRAVITY Coll. 2018, Alexander 2005)

* Newtonian effect: the Roemer delay due to finite value of c.
* Relativistic effects: the Doppler shift and the gravitational redshift.

* 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8¢ confidence level (GRAVITY Coll. 2020)

apn = J Y. [<4M° —v2> L+ 4y
1PN — JSP 7'2 , ,

where fop=1,r =17,y = (iff’, r@é, rq5 siné’qg),v = |v|
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Second step: applying Markov Chain Monte Carlo (MCMC) method
using emcee (Foreman-Mackey et al. 2013) Python package

We need to sample  P(@|D) «x P(D|0)P(0) for different fixed values of o

D = data set

sma?’

Hi = {e, a Q, i, Q, tp, RO, M., XO, yo, VxO, Vyo, VZO’ A}

Scalar field

BH Mass C :
Keplerian elements orrection to .
P apd GC NACO and RV fractional
distance data mass

P(D | 0) = Gaussian Likelihood

P(0) = Uniform priors for physical parameters, Gaussian priors for (xy, Yy, V.0, Vy0 Vo0) (Plewa et al. 2015)




Second step: applying Markov Chain Monte Carlo (MCMC) method
using emcee (Foreman-Mackey et al. 2013) Python package
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A = argmax Z(A,|D)

o
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According to
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To summarize...

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass
AN =M _,,4/M of a boson field cloud around Sgr A*.

Orbital range of S2 only allow us to constrain 0.01 < o < 0.045 and we found A < 10 at 36 confidence
level.

Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by superradiance (Brito ef al. 2015).
However, (Kodama & Yoshino 2012) show that for M, ~ 4 - 10° M,

m, > 10718eV (@ = 0.045, m ~3-10718eV)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived
structures (Cardoso et al. 2022a, Cardoso et al. 2022b).




Conclusions, possible issues and future prospects

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass
A =M,,,q/M of a boson field cloud around Sgr A*.

Orbital range of S2 only allow us to constrain and we found at 3o confidence
level.

 S2 is orbiting on the equator of the BH, i.e. @ = /2 but there are no evidences. However, max difference in
the astrometry and radial velocity with orbit at @ = 0 is ADEC ~ AR. A .~ 25% fora = 0.01 and
AV, = 15 % for a = 0.045. Difference would be forany 8 € (0, /2).

* No inclusion of BH’s spin axis inclination with respect to observer frame. showed that it
plays important role in the effects the cloud has on S2 motion. Left for future works.

* Inclusion of other S-stars, and hence different orbital ranges, is needed in order to have stronger constraints -
or even a detection!
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Back-up slides



Corrections to the Newtonian model
(GRAVITY 2018, Alexander 2005)

 Newtonian effect: the Roemer delay due to finite value of ¢

ZobsTem)
Roemer equation: fobs — b T+ obsem” — )
C
. Zobs(Lobs) On average on S2 orbit
1st order expansion around ., :  fem = Iops T

¢ =V, (Zops) Al = lep — s & 8 days




Corrections to the Newtonian model
(GRAVITY 2018, Alexander 2005)

 Newtonian effect: the Roemer delay due to finite value of ¢

« Relativistic effects: the Doppler shift and the gravitational redshift (G = ¢ = 1) must be included when S2 reaches
periastron with total space velocity  ~ 1072.

I+ pcosb
Doppler: p = —1
\/1—p?
1
Gravitational redshift:  Zyray = —1

V1= 2M.Jrem




Corrections to the Newtonian model
(GRAVITY Coll. 2018, Alexander 2005)

 Newtonian effect: the Roemer delay due to finite value of ¢

« Relativistic effects: the Doppler shift and the gravitational redshift (G =c¢ = 1)
* 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8¢ confidence level (GRAVITY Coll. 2020)

.M, 4M,_ o\ T 4;
alPN_fSPrz P i B

where fop=1,r=riv = <,-,,¢, réé, rq[ﬁ sin@dA)),v = |v|




0 0
From Euler-Lagrange equations: d < 3) i =0

dt\dg) g

. 2 242 1 / ’

F = r6® = rsin® 0% +— — A (P{(r) + Pj(r)cos 20) = 0
— 2ri sin® O¢h + 2r% cos 0 sin 00¢ + r?sin’ ¢ = 0

2ri-0 + 1?0 — r? cos 200¢* + 2AP,(r)sin 200 = 0

That we numerically integrate using an adaptive Runge-Kutta of order 4(5) and initial conditions given by
the solution of Kepler’s two body problem.

1 —e?
rio) = T — cos@ () Kepler’s equation
¢(l‘o)=23rctan( 1+etan %(t0)> &—esiné — M =0
I=e 2 with
. B 2me sin(&(1y)) 2
) = T cos@ ) M= — (tO - ’p)

. 3 27(1 —e) l1+e
Plo) = (ecos(B(1p) — 12V 1—e



« Step 1. It generates K walkers around any initial value of the parameters Qio from A (91.0, 6) (6 = 107°);

. Step 2. To update the position of a walker at X,(7), a walker XJ is randomly extracted from the

complementary ensemble S[k] = {Xj, Vj # k} and the new position is generated as

Y=X+272 [Xk(t) — X]] where Z is drawn from g(Z = z) defined as:

o(2) é isz[%,a]

0O otherwise

p(Y)
(X))

« Step 3. It computes ¢ = min (1, VAR ) , where N is the number of parameters, for each walker.
4

. Step 4. It randomly extracts a variable r ~ U [O, 1] . If r < g then the move is accepted and

X (t+ 1) = Y. If r > g the move is rejected and X, (t + 1) = X (¢).
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