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S2: “Kerr hypothests”: Astrophysical black holes are well described by the Kerr black hole
solution of vacuum General Relativity (GR).
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Q3: If so, could such ECOs be astrophysically viable?

In my talk I will give partial, but hopefully informative, answers to these three questions.
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Stationary Black Holes and Light Rings

| Pedro V. P. Cunha®' and Carlos A.R. Herdeiro®”
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The ringdown and shadow of the astrophysically significant Kerr black hole (BH) are both intimately
connected to a special set of bound null orbits known as light rings (LRs). Does it hold that a generic
equilibrium BH must possess such orbits? In this Letter we prove the following theorem. A stationary,
axisymmetric, asymptotically flat black hole spacetime in 1+ 3 dimensions, with a nonextremal,
topologically spherical, Killing horizon admits, at least, one standard LR outside the horizon for each
rotation sense. The proof relies on a topological argument and assumes C? smoothness and circularity, but
makes no usc of the field equations. The argument is also adapted to recover a previous theorem

cstablishing that a horizonlcss ultracompact object must admit an cven number of nondegencrate LRs, onc
of which is stable.

DOI: 10.1103/PhysRevLelt.124.181101
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Central 1dea: These potentials
LRs are critical points N/ H 1 =0 define vector fields Vi=VH,
of two potentials = as their gradients:
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The topological charge 1s additive:

%dﬂzQﬂZwi, w; = —1,1.
¢ i
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Ol: Do all theoretical black hole solutions have Kerr-like LRs?

(Partial) R1:

Yes,
under the stated conditions of the theorem (and possibly even more LRs).

But,

can be circumvented

(e.g.) by changing the boundary conditions.

Example of a BH without LRs (asymptotically Melvin):
Junior, Cunha, CH, Crispino, Phys. Rev. D 104 (2021) 044018
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Proca stars (Brito, Cardoso, CH, Radu, PLB 752 (2016) 291); can form dynamically (Seidel, Suen, PRL 72 (1994)

2516); Perturbatively stable Gleiser and Watkins, NPB 319 (1989) 733; Lee and Pang, NPB 315 (1989) 477; Can be
studied dynamically in binaries (Liebling and Palenzuela LRR 20 (2017) 5)

b) wormholes (Morris and Thorne, Am. J. Phys. 56 (1988) 595-412)
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d) fuzzballs (Mathur, Fortsch. Phys. 53 (2005) 793)

e) ... See e.g. Pani and Cardoso, Nature Astron. 1 (2017) 9, 586
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Generic statements”?



A theorem for ultracompact ECOs that form
from incomplete gravitational collapse

week ending

PRL 119, 251102 (2017) PHYSICAL REVIEW LETTERS 22 DECEMBER 2017

Light-Ring Stability for Ultracompact Objects

Pedro V. P. Cunha,l’2 Emanuele Berti,3’2 and Carlos A.R. Herdeiro'
1Depar,rl‘amento de Fisica da Universidade de Aveiro and CIDMA, Campus de Santiago, 3810-183 Aveiro, Portugal
2CENTRA, Departamento de Fisica, Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
3Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA
(Received 3 August 2017; revised manuscript received 18 October 2017; published 18 December 2017)

We prove the following theorem: axisymmetric, stationary solutions of the FEinstein field equations
formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere
smooth and ultracompact (i.e., they have a light ring) must have at least rwo light rings, and one of them is
stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result
implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as
observational alternatives to black holes whenever these instabilities occur on astrophysically short time
scales. The proof of the theorem has two parts: (1) We show that light rings always come in pairs, one being a
saddle point and the other a local extremum of an effective potential. This result follows from a topological
argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime
dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics.
(11) Assuming Einstein’s equations, we show that the extremum is a local minimum of the potential
(1.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

DOI: 10.1103/PhysRevLett.119.251102
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axisymmetric, stationary solutions of the Einstein field equations
formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere

smooth and ultracompact (i.e., they have a light ring) must have at least rwo light rings, and one of them is
stable.

implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as
observational alternatives to black holes whenever these instabilities occur on astrophysically short time
scales. The proof of the theorem has two parts: (1) We show that light rings always come in pairs, one being a
saddle point and the other a local extremum of an effective potential. This result follows from a topological
argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime
dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics.
(11) Assuming Einstein’s equations, we show that the extremum is a local minimum of the potential
(1.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

DOI: 10.1103/PhysRevLett.119.251102



; Asymptotic
Horizon flatness
b.c. N




b
O
Regular

origin

b.c. b

Asymptotic
flatness

b.c.



Regular

origin

b.c. b

w= lim lim (hm% dﬂ> ==
R—+ocorg—0 \ §—0 C

Asymptotic
flatness

b.c.



ultracompact

ECO

start: ~ flat spacetime

dynamical collapse




A generic dynamical picture

ultracompact

ECO

D

dynamical collapse




A generic dynamical picture

ultracompact

ECO

D

dynamical collapse




A generic dynamical picture

ultracompact

ECO

start: ~ flat spacetime



A generic dynamical picture

ECO

start: ~ flat spacetime

dynamical collapse




A generic dynamical picture

ECO

start: ~ flat spacetime

dynamical collapse




A generic dynamical picture

~ ultracompact

ECO

start: ~ flat spacetime

dynamical collapse

~

off-shell sequence |



A generic dynamical picture

ultracompact

ECO

start: ~ flat spacetime
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Punch line:

any (stationary, axi-symmetric, circular, topologically trivial) ECO that forms
from an incomplete gravitational collapse
which has a standard LR, must have an exotic one as well.

The exotic LR must be stable, if the Null Energy Condition (NEC) 1s obeyed.



O2: Can theoretical horizonless exotic compact objects (ECOs) have Kerr-like LRs?

(Partial) R2:

Yes,
but under the stated conditions of the theorem

necessarily with extra baggage: there 1s an extra LR, which 1s stable assuming the NEC.

But,

can be circumvented (e.g.):
by non-trivial topology (e.g. wormholes),
by non-smoothness (e.g. gravastars),
by ad hoc boundary conditions (e.g. truncations of Kerr).
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1) Appear in a well motivated and consistent physical model;

2) Have a dynamical formation mechanism;

3) Be (suthciently) stable.



Q3: If so, could such ECOs be astrophysically viable?

Some viability conditions:

1) Appear in a well motivated and consistent physical model;

2) Have a dynamical formation mechanism;

3) Be (suthciently) stable.

Then,
there 1s a possible generic viability 1ssue for ultracompact ECOs with a stable LR:

stable LRs may lead to a trapping instability.

J. Keir, Class.Quant.Grav. 33 (2016) no.13, 135009; Benomio, arXiv:1809.07795

- Non-linear;

- Time scale?
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Exotic Compact Objects and the Fate of the Light-Ring Instability

Pedro V. P. Cunha ,1 Carlos Herdeiro ,1 Eugen Radu,1 and Nicolas Sanchis-Gual >

1Departamem‘o de Matemdtica da Universidade de Aveiro and Centre for Research and Development
in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, Portugal
2Departament0 de Astronomia y Astrofisica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain

(Received 12 August 2022; accepted 6 December 2022)

Ultracompact objects with light rings (LRs) but without an event horizon could mimic black holes (BHs)
in their strong gravity phenomenology. But are such objects dynamically viable? Stationary and
axisymmetric ultracompact objects that can form from smooth, quasi-Minkowski initial data must have
at least one stable LR, which has been argued to trigger a spacetime instability; but its development and fate
have been unknown. Using fully nonlinear numerical evolutions of ultracompact bosonic stars free of any
other known instabilities and introducing a novel adiabatic effective potential technique, we confirm the
LRs triggered instability, identifying two possible fates: migration to nonultracompact configurations or
collapse to BHs. In concrete examples we show that typical migration (collapse) timescales are not larger
than ~10° light-crossing times, unless the stable LR potential well is very shallow. Our results show that the
LR instability is effective in destroying horizonless ultracompact objects that could be plausible BH
1mitators.
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There 1s an instability and there 1s a transition:
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Q3: If so, could such ECOs be astrophysically viable?

(Partial) R3:

The trapping instability associated to stable LLRs 1s real in the concrete studied models
and
it needs not be too long lived, except near the critical solution,
leading to collapse or migration.

This questions the viability of ultracompact ECOs,

that have a plausible formation mechanism.

But,

only two families of examples; generality?

there are important open questions
(non-monotonic instability time scale, loss of axi-symmetry,
non-linear character of the instability, spatial correlation with stable LR,...).
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“There ts a crack tn everything,
that s how the light gets in”
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