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1. 50 years of black hole entropy: Bekenstein 1972 and
after

·In 1972, after giving deep thoughts to his supervisor John Wheeler’s question,
what happens to the entropy when matter goes down a black hole, is the
second law of thermodynamics violated?, Bekenstein came up with the
solution: a black hole has entropy. The letter with title Black Holes and the
Second Law, was received by the journal Il Nuovo Cimento, in May 22, 1972
and published just after. The paper has four pages, in it Bekenstein proposes
that the black hole entropy S is given by the expression

S = η
A

Apl
.

where η is a number of order of unity and Apl is the Planck area, Apl =
h̄G
c3 . It

was an amazing proposal and as written it is the Bekenstein entropy.

·Since Apl appears in the formula, it was the first time that it was recognized
that black holes and quantum gravity were entangled.



1. 50 years of black hole entropy: Bekenstein 1972 and
after



1. 50 years of black hole entropy: Bekenstein 1972 and
after



1. 50 years of black hole entropy: Bekenstein 1972 and
after

·In November 2, 1972, Bekenstein submitted another paper, now to PRD,
published in 1973, with the title Black Holes and Entropy. In this paper he
proposed that η = 1

2 ln2, i.e., S =
(1

2 ln2
) A

Apl
. Note that 1

2 ln2 = 0.35 in first
approximation.

·Then Hawking using quantum fields in a star collapsing to a black hole

background found that a black hole has temperature TH = 1
8π

c2

kB

m2
pl

M , where
m2

pl =
h̄c
G . He then found immediately, that η = 1

4 so that S = 1
4

A
Apl

, i.e.,

S =
1
4

A.

in Planck units. This is the Bekenstein-Hawking entropy, the black hole
entropy.

·Black holes extended their realm, they were of interest not only in
astrophysics and gravitation, they now also embraced the quantum realm,
from elementary particles to quantum gravity.



1. 50 years of black hole entropy: Bekenstein 1972 and
after
·We are interested in systems with high Hawking temperature: 10−13 cm and
1011 K. Quantum effects are important, but not full quantum gravity.

·If the system is a pure black hole, left by itself it evanesces. Due to the
Hawking temperature, the black hole would radiate on and on and disappears.

·To understand better black holes, one encloses it inside a heat reservoir at
constant temperature T and constant radius R, characterizing the statistical
mechanics canonical ensemble. A thermodynamic treatment is then possible.

·Use the Euclidean path integral approach to quantum gravity of Hawking
1979 and York 1986. The idea is that the classical action I contributes to the
statistical mechanics partition function Z, and at a semiclassical level one has
Z = e−I . From thermodynamics the free energy is F =−T lnZ = TI.

·Now, I =− 1
16π

∫
M

√
g (R−Λ)d4x+ 1

8π

∫
r=R

(
K −K0

)√
γd3x.

·In the path integral approach to quantum gravity we seek to understand phase
transitions involving changes of topology. Here we go one step further and
study black holes and cosmology, i.e., the Schwarzschild-de Sitter space.



2. Schwarzschild-de Sitter in the canonical ensemble
·The Schwarzschild-de Sitter metric is

ds2 =−V(r)dt2 +
dr2

V(r)
+ r2dΩ

2, with V(r) = 1− 2m
r

− r2

3ℓ2 ,

where m is the spacetime mass, ℓ is the typical length, ℓ= 1√
Λ

, with Λ a

positive cosmological constant, Λ > 0, and dΩ2 = dθ 2 + sin2
θdφ 2. There are

horizons for V(r = r+) = 0, i.e., m = r
2

(
1− r2

3ℓ2

)
. The two positive roots

correspond to a black hole horizon r+ and to a cosmological horizon rc,
r+ = r+(m, ℓ) , rc = rc(m, ℓ) ,

with r+ ≤ rc.

r+

Schwarzschild
de Sitter space

r
c

It is a cosmological black hole. The roots coincide for
r+ = rc = 3m = ℓ.

·To do statistical physics Euclideanize time t →−it and, at some radius R, put
a period β given by β = 1

T , where T is the temperature. This defines the
canonical ensemble.



2. Schwarzschild-de Sitter in the canonical ensemble
·We have two types of reservoir and so two types of physical situations, the
reservoir out for the inside and the reservoir in for the outside. Let us do the
reservoir out for the inside. The Euclidean topology is R2 ×S2, with boundary
S1 ×S2, contrast with trivial topology S1 ×R3 for hot de Sitter space and the
same boundary.

r
+

Schwarzschild

de Sitter

T

R

r
c

heat

reservoir

·The action is
I = βR

(
1−

√
V(R)

)
−πr2

+, V(R) = 1− 2m
R

− R2

3ℓ2 ,

with β = 1
T . From the connection with thermodynamics, deduce

E = R
(

1−
√

V(R)
)

and S = πr2
+ = 1

4 A+, the Bekenstein-Hawking entropy.



2. Schwarzschild-de Sitter in the canonical ensemble
·The Hawking temperature is TH = κ

2π
. Find TH = 1

2πr+

(
3m
r+

−1
)

. The path

integral formalism gives T = TH√
V(R)

, so T =
1

2πr+

(
3m
r+

−1
)

√
1− 2m

R − R2

3ℓ2

. T is fixed by the

reservoir. There are two solutions, in general,

r+1 = r+1(R,T, ℓ), r+2 = r+2(R,T, ℓ) ,

with r+1 ≤ r+2. For small Λ, i.e., for large ℓ, such that R
ℓ ≪ 1, there are no

black hole solutions for
RT

(
1− 415

81
R2

ℓ2

)
<

√
27

8π
,

with r+2
R = r+1

R = 2
3 −

34
243

R2

ℓ2 at equality. The minus sign is what one expects.

·For high T the system is solvable. Either TH → ∞, so r+1 → 0, it is the small
black hole, and is thermodynamically unstable, the heat capacity obeys

C =
(dE

dT

)
R < 0. Or V(R)→ 0, then find r+2 = R

(
1−

1− R2

ℓ2

16π(RT)2

)
, it is the

large black hole, and is thermodynamically stable, the heat capacity obeys
C =

(dE
dT

)
R > 0.



2. Schwarzschild-de Sitter in the canonical ensemble
Let us do now the reservoir in for the outside:

r
+

heat

reservoir

R

T

Schwarzschild

de Sitter
r
c

·The action is now
I =−βR

(
1−

√
V(R)

)
−πr2

c , V(R) = 1− 2m
R

− R2

3ℓ2 ,

with β = 1
T . Find E =−R

(
1−

√
V(R)

)
from the connection with thermody-

namics, and S = πr2
c =

1
4 Ac, the Bekenstein-Hawking entropy for a cosmolo-

gical horizon. Note the minus sign for E. This system is thermodynamically
unstable, C =

(dE
dT

)
R < 0: m increases, so r+ increases and rc decreases, and

vice versa.



3. Extreme Schwarzschild-de Sitter in the canonical
ensemble: Nariai solution
·Want to study black hole horizon region inside the heat reservoir in the
extreme Schwarzschild-de Sitter in the canonical ensemble. Get Nariai space.
·Do r+ → R, rc → R, so that TH → 0, with T of the reservoir remaining finite.
From T = TH√

V
, the numerator is compensated by the denominator. Write

r+ = R(1− ε) and R2

ℓ2 = 1−δ , obtain TH = δ+2ε

4πR . Writing V = 4πTH(R− r+)

− 1
R2 (R− r+)2, and making r− r+ = 4πTH

R2 sin2 (1
2

z
R

)
, t̃ = 2πRTHt, obtain

ds2 =+sin2
( z

R

)
dt̄2 +dz2 +R2dΩ

2 .

This is the Nariai space. Note that z = 0 and z = π R are horizons. In general
for Nariai, one has 0 < t̃ < 2πR, 0 ≤ z ≤ zB, 0 ≤ θ ≤ π , 0 ≤ φ < 2π .
·Now from T = TH

√
V

get T = 1
2πRsin( zB

R )
, so that the new Hawking temperature is

TH = 1
2πR and zB = Rarcsin

(
1

2πTR

)
.

Given R and T of the ensemble, one has automatically zB, the boundary. In
turn 0 ≤ zB ≤ π R. For TR < 1

2π
there are no horizons only hot space. Find

E = R = constant, and interestingly neutral thermodynamic equilibrium.



3. Extreme Schwarzschild-de Sitter in the canonical
ensemble: Nariai solution

·The Nariai solution. The topology is S1 × [a,b]×S2 with boundary S1 ×S2.
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·Note that the three spaces with the reservoir outside, Schwarzschild-de Sitter,
Nariai, and hot de Sitter space, have the same type of boundary S1 ×S2,
although different topologies, R2 ×S2, S1 × [a,b]×S2, and S1 ×R3. This
shows that there are topological phase transitions between the different
spaces, in the quantum gravity semiclassical approximation considered here.



4. Conclusions
·Bekenstein was born in Mexico in 1947, went to Princeton for the PhD with
Wheeler, and then to Jerusalem. He had several important works on modified
Newtonian dynamics as alternative to explain rotation curves of galaxies, and
black hole physics, his idea of black hole entropy is most extraordinary.
·In the wake of the idea, 50 years after, we are still exploring it further, and
surely it will lead to new phenomena. The holographic principle, that in a way
was initiated by York in 1986 with his result that the gravitational
thermodynamic energy E, a quasilocal energy, is on the boundary, not in the
volume, states that all the fundamental information, coming from the quantum
gravitational degrees of freedom, is indeed in the area, spawns from
Bekenstein’s black hole entropy idea, and it seems correct and to stay.
·We have shown that, black hole and cosmological horizons can be treated in
the Euclidean path integral formalism, and that Schwarzschild-de Sitter,
Nariai, and hot de Sitter space phases, all are specified by the same boundary
data, belong to the same canonical ensemble and can perform topological
transitions between them as it is allowed in quantum gravity. Which phase
dominates? Puzzling question but not beyond all conjecture.
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