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-In 1972, after giving deep thoughts to his supervisor John Wheeler’s question,
what happens to the entropy when matter goes down a black hole, is the
second law of thermodynamics violated?, Bekenstein came up with the
solution: a black hole has entropy. The letter with title Black Holes and the
Second Law, was received by the journal Il Nuovo Cimento, in May 22, 1972
and published just after. The paper has four pages, in it Bekenstein proposes
that the black hole entropy S is given by the expression

A
S=n—-m-.
Apl
where 1) is a number of order of unity and Ap, is the Planck area, Ap = ’Z—? It
was an amazing proposal and as written it is the Bekenstein entropy.

-Since Ay appears in the formula, it was the first time that it was recognized
that black holes and quantum gravity were entangled.
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Black Holes and the Second Law ().
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-In November 2, 1972, Bekenstein submitted another paper, now to PRD,
published in 1973, with the title Black Holes and Entropy In this paper he
proposed that = %ln2, ie.,S= ( ln2) A . Note that 1 5102 =0.35 in first
approximation.

-Then Hawking using quantum fields in a star collapsing to a black hole

2
background found that a black hole has temperature TH = lﬂ % %, where
mpl = hc . He then found immediately, that n = 4 so that S = % AAPI’ ie.,

1

S=-A.

4

in Planck units. This is the Bekenstein-Hawking entropy, the black hole
entropy.

-Black holes extended their realm, they were of interest not only in
astrophysics and gravitation, they now also embraced the quantum realm,
from elementary particles to quantum gravity.



“We are interested in systems with high Hawking temperature: 10~'3 cm and
10" K. Quantum effects are important, but not full quantum gravity.

-If the system is a pure black hole, left by itself it evanesces. Due to the
Hawking temperature, the black hole would radiate on and on and disappears.

-To understand better black holes, one encloses it inside a heat reservoir at
constant temperature 7" and constant radius R, characterizing the statistical
mechanics canonical ensemble. A thermodynamic treatment is then possible.

-Use the Euclidean path integral approach to quantum gravity of Hawking
1979 and York 1986. The idea is that the classical action I contributes to the
statistical mechanics partition function Z, and at a semiclassical level one has
Z = e~!. From thermodynamics the free energy is F = —TInZ = TI.

Now, I = —7 [, VER—A)d*x+ & [_p (K—K°) \/7dx.
-In the path integral approach to quantum gravity we seek to understand phase

transitions involving changes of topology. Here we go one step further and
study black holes and cosmology, i.e., the Schwarzschild-de Sitter space.



-The Schwarzschild-de Sitter metric is

dr? 2 2

ds® = —V(r)di + e )+r2d§22 with  V(r) = 1——’"— 3}2,
r

where m is the spacetime mass, ¢ is the typical length, ¢ = f’ with A a

positive cosmological constant, A > 0, and dQ> = d6? 4 sin? 0d¢>. There are
horizons for V(r=r;) =0,ie.,m=J < 1—3 £2> The two positive roots

correspond to a black hole horizon r and to a cosmological horizon r,
r.,.:lq.(m,@), rC:rC(maE)’

with ry <re.

Schwarzschild
de Sitter space

It is a cosmological black hole. The roots coincide for

ry=rc=3m=>~{.

-To do statistical physics Euclideanize time ¢ — —it and, at some radius R, put
a period B given by 8 = %, where T is the temperature. This defines the
canonical ensemble.



-We have two types of reservoir and so two types of physical situations, the
reservoir out for the inside and the reservoir in for the outside. Let us do the
reservoir out for the inside. The Euclidean topology is R? x §?, with boundary

S! x 82, contrast with trivial topology_éf X R3 for hot de Sitter space and the
same boundary. T -~

Schwarzschild
de Sitter

‘The action is

o R
—\/V -7 VIR)=1— — — —
( ) i (R) TR 3
7~ From the connection with thermodynamics, deduce

( —\/V ) and § = nr2 A+, the Bekenstein-Hawking entropy.

with f = l



‘The Hawking temperature is 7" = <. Find TH = 3m _1). The path

27z:r+ ry
L (3m_

integral formalism gives T = Tt ,so0T = M T is fixed by the
g g VR) N y
reservoir. There are two solutions, in general,
r+1=r+1(RT€) r+2=r+2(RT€)
with ;1 < r 5. For small A, i.e., for large /, such that £ 7 < 1, there are no

black hole solutions for e (1 415 R? V27
81 ¢2 8’

ith 72 — 1 2 _ 34 R i i ign i
with * = 7 = 5 — 37577 at equality. The minus sign is what one expects.

-For high T the system is solvable. Either TH — oo, s0 r,.; — 0, it is the small
black hole, and is thermodynamically unstable, the heat capacity obeys

_R
C = (Z—?)R<O OI'V(R)—)O, thenﬁndr+2 :R(l_ﬁ

large black hole, and is thermodynamically stable, the heat capacity obeys
c=(%),>0
dr)r ~

, it is the



Let us do now the reservoir in for the outside:

Schwarzschild
de Sitter

heat

-The action is now ) om  R2
1=—BR(1-VVR)) -2, V(R)=1- B
with B = 1. Find E = —R <1 —/ V(R)) from the connection with thermody-
namics, and § = 7 = %AC, the Bekenstein-Hawking entropy for a cosmolo-
gical horizon. Note the minus sign for E£. This system is thermodynamically

unstable, C = (g—?) r < 0: m increases, so r increases and r. decreases, and
vice versa.



-Want to study black hole horizon region inside the heat reservoir in the
extreme Schwarzschild-de Sitter in the canonical ensemble. Get Nariai space.

-Dory — R, rC — R, so that Ty — 0, with T of the reservoir remaining finite.
From T = \F’ the numerator is compensated by the denominator. Write

r. =R(1—¢)and & ZZ = 1—§, obtain TH = 928 Writing V = 4xTH(R—r,)

4nR
—%(R —ry)?, and makmg r—ry = 4’1’5 sin? (1), 7= 2xRTH¢, obtain

ds* = +sin (E) dP? 4+ dz* + R*dQ> .
This is the Nariai space. Note that z =0 and z = 7 R are horizons. In general

for Nariai, one has 0 <7< 27R,0<7<7z5,0<0 <7, 0< ¢ < 2m.

=1
‘Now from T = WgetT R

1
=R in ([ —— .
ZB arcsin ( 27rTR>
Given R and T of the ensemble one has automatically zg, the boundary. In

turn 0 < zg < wR. For TR < 5 there are no horizons only hot space. Find
E = R = constant, and 1nterest1ngly neutral thermodynamic equilibrium.

ﬁ so that the new Hawking temperature is

TH = 2:1r_R and



“The Nariai solution. The topology is S! x [a,b] x S? with boundary S' x §2.
% horizon S

heat reservoir
B T R
Nariai

z,— horizon /g2

-Note that the three spaces with the reservoir outside, Schwarzschild-de Sitter,
Nariai, and hot de Sitter space, have the same type of boundary St x 82,
although different topologies, R> x 52, S! x [a,b] x §2, and S! x R>. This
shows that there are topological phase transitions between the different
spaces, in the quantum gravity semiclassical approximation considered here.



-Bekenstein was born in Mexico in 1947, went to Princeton for the PhD with
Wheeler, and then to Jerusalem. He had several important works on modified
Newtonian dynamics as alternative to explain rotation curves of galaxies, and
black hole physics, his idea of black hole entropy is most extraordinary.

-In the wake of the idea, 50 years after, we are still exploring it further, and
surely it will lead to new phenomena. The holographic principle, that in a way
was initiated by York in 1986 with his result that the gravitational
thermodynamic energy E, a quasilocal energy, is on the boundary, not in the
volume, states that all the fundamental information, coming from the quantum
gravitational degrees of freedom, is indeed in the area, spawns from
Bekenstein’s black hole entropy idea, and it seems correct and to stay.

-We have shown that, black hole and cosmological horizons can be treated in
the Euclidean path integral formalism, and that Schwarzschild-de Sitter,
Nariai, and hot de Sitter space phases, all are specified by the same boundary
data, belong to the same canonical ensemble and can perform topological
transitions between them as it is allowed in quantum gravity. Which phase
dominates? Puzzling question but not beyond all conjecture.
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