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INTRODUCTION



1. Introduction

Problem definition

▪ Standard Model: current theoretical physics framework
▪ Does not explain some key aspects of the behaviour of matter

▪ LHC (CERN) → experimentation looking for new models
1. p-p collisions are produced to obtain real data

2. Simulated data is generated based on new models: New Physics

3. Both data are compared → verify new model



1. Introduction

Objetives

▪ Generating simulated events is very costly
▪ Traditional methods (Monte Carlo) consume lots of time and energy

▪ Future experiments → billions of events → not feasible with current models

▪ Solution: generative models → generate events in an efficient way

▪ Objetives
▪ Create generative models to generate events based on data 

that was generated through simulation by the Monte Carlo method

▪ Accelerate the generation process to reduce the energy and time costs

▪ Keep the accuracy of generated events

▪ Determine which is the best model



DATA



3. Data

Physics processes

▪ Dataset with processes from the Standard Model and New Physics
▪ Contains generated events → traditional methods

▪ Information per event:
▪ MET

▪ MET𝜙

▪ Per each particle (max. 19):

▪ 𝐸, 𝜂, 𝜙, 𝑝𝑇

▪ Used processes:
▪ Standard Model: ttbar

▪ New Physics: stop_02

▪ Huge amount of information
▪ Impossible to load in main memory

▪ Solution: circular buffer
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3. Data

Probability distributions

▪ 𝑀𝐸𝑇, 𝐸 y 𝑝𝑇: log-normal

▪ Applied logarithm to resemble 
a normal distribution →
makes learning easier

 𝜙 y 𝑀𝐸𝑇𝜙: uniform

𝜂: similar to gaussian with
trimmed extreme values➔
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2. Models

Variational Autoencoders

▪ Generative model

▪ Training/generation:
1. Encode the input to the latent space

2. Generate data following its probability distribution*

3. Decode data to input dimensions

▪ Variants: 𝛽-VAE and 𝛼-VAE



2. Models

VAE variants

𝛽-VAE

▪ Loss function weights are proportional to 𝛽:
𝐿𝑉𝐴𝐸 = 1 − 𝛽 𝑀𝑆𝐸 + 𝛽𝐾𝐿

▪ Encoding: z = 𝜖 ∗ 𝑒
1

2
log 𝜎2 + 𝜇

▪ 𝜖 ~𝒩(𝜇 = 0, 𝜎 = 1)

𝛼-VAE

▪ Gaussian noise is added to the encoding
with the following distribution:

𝒩(𝜇 = 0, 𝜎 = 𝛼)



2. Models

Bayesian Gaussian Mixture Models

▪ Unsupervised learning model

▪ Assumes: data can be described by a normal distribution

▪ Has 𝛾 components
▪ Each one is a multivariate Gaussian distribution

▪ Has its own mean vector and covariance matrix

▪ Generates data based on the learned distribution.

 Training

Generation →
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4. Experimentation

Experiment I: Initial model

▪ MET + MET𝜙 considered one more particle

▪ Input/output data → 2 capas
▪ Particle identifier (1-Hot vector)

▪ Particle properties (𝐸, 𝜂, 𝜙, 𝑝𝑇)

▪ Physics process: ttbar (Standard Model)

▪ Model: 𝛽-VAE + BGMM
▪ 𝛽 ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.5}

▪ 𝛾 ∈ {10, 50, 100}
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4.1. Experiment I

Training and generation

1. Training the 𝛽-VAE with original 
data

3. Generation of events taking the
BGMM as the starting point

2. Training the BGMM with encodings 
of the already trained encoder



4.1. Experiment I

Results (𝛽 = 0.01, 𝛾 = 50)

▪ Problem: uniform distributions.



4. Experimentation

Experiment II: Input splitting

▪ Split MET + MET𝜙 in a separate layer

▪ Same training process

▪ Physics process: ttbar (Standard Model)

▪ Input/output data → 3 layers
▪ Particle identifier (1-Hot vector)

▪ MET + MET𝜙

▪ Particle properties (𝐸, 𝜂, 𝜙, 𝑝𝑇)

▪ Model: 𝛽-VAE (+ BGMM)
▪ 𝛽 ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.5,0.7,1}

▪ 𝛾 = 100
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4.2. Experiment II

Results – comparing 𝛽 in attribute 𝐸 of the 1st jet

𝛽 = 0.0 𝛽 = 0.001 𝛽 = 0.01

𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1.0



4.2. Experiment II

Results (𝛽 = 0.001, 𝛾 = 100)

▪ Observation: uniform distributions are correct in the model without BGMM.



4. Experimentation

Experiment III: Introducing the 𝛼-VAE

▪ Same VAE architecture from experiment II
▪ The variator changes

▪ Physics process: ttbar (Standard Model)

▪ Model: 𝛼-VAE (+ BGMM)
▪ 𝛼 ∈ {0.1, 0.2, 0.3}

▪ 𝛾 = 10, 20, 50, 100

E
n
c
o
d
e
r

D
e
c
o
d
e
r



4.3. Experiment III

Training and generation

1. Training the 𝛼-VAE with original 
data

3. Generation of events taking the
BGMM as the starting point

2. Training the BGMM with encodings 
of the already trained encoder



4.3. Experiment III

Results – comparing 𝛼

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

1st jet
Attribute 𝐸

1st lepton
Attribute 𝑝𝑇



4.3. Experiment III

Results (𝛼 = 0.2, 𝛾 ∈ {10, 100})

▪ Observation: BGMM keeps obtaining a worse result.



4. Experimentation

New Physics processes (BSM)

▪ After selecting the best model→ training with a BSM process

▪ Physics process: stop_02 (New Physics)

▪ Selected models:
▪ 𝛽-VAE without BGMM (𝛽 = 0.001)

▪ 𝛼-VAE without BGMM (𝛼 = 0.2)

▪ We did not test models with BGMM → lack of time



4.4. New Physics

Results (𝛽 = 0.001, 𝛼 = 0.2)

▪ Observation: Similar results, 𝛼-VAE adjusts better in some cases



CONCLUSIONS



4. Conclusions

▪ Achieved objectives: more efficient event generation

▪ 2 models with promising results: 𝛽-VAE and 𝛼-VAE without BGMM
▪ We should keep adjusting model parameters to improve results

▪ BGMM does not obtain the expected results
▪ ¿Requires more components?

▪ It will be required to perform additional experimentation



4.1. Future work

▪ Generating events in a fast way is a need of critical importance
▪ Further research is required

▪ Proposals
▪ Experiment the use of more components in BGMMs

▪ Creation of advanced metrics

▪ Usage of other types of models: GAN, Flow models…
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