Machine Learning Algorithms and Particle Physics
Searches

Joao Pedro Pino Goncgalves!

Based on JHEP 01 (2021) 076, JHEP 01 (2022) 154 and EPJC 82, 826 (2022)

1Phys;ics; Department and Centre for Research and Development in Mathematics and Applications
(CIDMA), University of Aveiro, Portugal.

3rd Workshop on Compact Objects, Gravitational Waves and Deep
Learning - University of Minho

- FeT e B o m,

CIDMA] =




The Standard Model (SM) is the basis by which all subatomic interactions are
described. However, some unanswered questions remain ...

@ Inability to explain the observed particle spectra (family replication, masses
and couplings hierarchies, neutrino masses);

Lack of a Dark matter (DM) candidate;

Hiearchy problem;

(9 —2), anomaly, Rk x- anomalies, matter/anti-matter asymmetry;

Naive quantization of gravity leads to a non-renormalizable theory, etc;

‘A simple observation => SM is not the ultimate theory




The story of SM is incomplete, but we have not found anything new! That
means

o New physics is heavy, i.e., of the TeV-PeV order (or beyond);
@ New physics is weakly coupled to the SM, i.e., low couplings;

As constraints on new physics become increasingly tighter, computational
resources become more and more important.

We need

o Powerful, reliable and proven methods to deal with weak signals in the
ocean of the SM background;

@ The methods must be comfortable in dealing with large datasets.

Machine learning to the rescue !




Deep Learning

Deep Learning (DL) — Extracting high-
level features from input data

output

Universal approximation theorem [Kurt input
layer

] layer
Hornik, Neural Networks. 4 (2): 251-257]
I
Approximate any function, for an
arbitrary number of layers!

‘ Detects small deviations in classes = Perfect for classfication tasks! ‘

(a)  For cats and dogs (b)  For detector images




Deep Learning

neurons = 512
activ = ’sigmoid’

initl = ’RandomNormal’

loss = ’binary_crossentropy’
metric = ’accuracy’

a1 = 1.e-7

a2 = 1.e-7

alp = 0.1

nb_classes = 5

def NN_model():
model = Sequential()
#Input layer
nn = model.add(Dense(neurons,

model.add (Activation(activ))

#2nd layer
model.add(Dense (neurons,

kernel_regularizer=regularizers.11_12(1l1=al,
model.add (Activation(activ))

kernel_initializer=initl,

#3rd layer
model.add(Dense(neurons, kernel_initializer=initl,

kernel _regularizer=regularizers.11_12(1l1=al,
model.add (Activation(activ))

#4th layer
model.add (Dense (neurons ,

kernel_regularizer=regularizers.l1_12(1i=al,
model.add (Activation(activ))

kernel_initializer=initl,

# Output layer
model.add(Dense(nb_classes, init=initl ,
model.compile (loss=1loss,
return model

input_dim=X_train.shape[1],
kernel_regularizer=regularizers.11_12(1l1=al

kernel_initializer=initl,
12=a2)))

12=a2)))

12=a2)))

12=a2)))

activation=activ ))

optimizer=Adam(), metrics=[metric])



Deep Learning

neurons = 512
activ = ’sigmoid’ . - .
Sy e ermal’ @ Number of neurons: Arbitrary;
loss = ’binary_crossentropy’
metric = ’accuracy’
al = l.e-7 parameters);
a2 = 1.e-7
alp = 0.1
nb_classes = 5
def NN_model(): 9
model = Sequential ()

@ Activation functions: 10 + in Keras (with tunable

@ Initializers: 10 + in Keras (with tunable parameters

#Input layer
nn = model.add(Dense (neurons,
model.add (Activation(activ))

#2nd layer
model.add (Dense (neurons, kernel_initializer=initl,

kernel_regularizer=regularizers.l1_12(1l1=al,
model.add (Activation(activ))

#3rd layer
model.add(Dense (neurons, kernel_initializer=initl,

kernel _regularizer=regularizers.1l1_12(1l1=al,
model.add (Activation(activ))

#4th layer

model.add(Dense (neurons, kernel_initializer=initl,
kernel_regularizer=regularizers.l1_12(1l1=al,

model.add (Activation(activ))

# Output layer
model.add (Dense (nb_classes, init=initl ,
model.compile(loss=1loss,
return model

input_dim=X_train.shapel[1],
kernel_regularizer=regularizers.11_12(1l1l=al,

kernel_initializer=initl,
12=a2)))

12=a2)))

12=a2)))

12=a2)))

activation=activ ))

optimizer=Adam(), metrics=[metric])



Deep Learning

neurons = 512

activ = ’sigmoid’ , A lot of free parameters to tune in architectural building
initl = ’RandomNormal

loss = ’binary_crossentropy’ ‘U’

metric = ’accuracy’

2 L Calls for some optimization procedure — Genetic algorithms!
alp = 0.1

nb_classes = 5

def NN_model():
model = Sequential()
#Input layer
nn = model.add(Dense(neurons, input_dim=X_train.shape[1], kernel_initializer=initl,
kernel _regularizer=regularizers.11_12(1l1=al, 12=a2)))
model.add (Activation(activ))

#2nd layer

model.add(Dense (neurons, kernel_initializer=initl,
kernel_regularizer=regularizers.l1_12(11=al, 12=a2)))

model.add (Activation(activ))

#3rd layer
model.add (Dense (neurons, kernel_initializer=initl,

kernel _regularizer=regularizers.1l1_12(l1=al, 12=a2)))
model.add (Activation(activ))

#4th layer
model.add(Dense (neurons, kernel_initializer=initl,

kernel_regularizer-regularizers.11_12(1l1=al, 12=a2)))
model.add(Activation(activ))

# Output layer
model.add (Dense (nb_classes, init=initl , activation=activ ))

model.compile(loss=1loss, optimizer=Adam(), metrics=[metric])
return model



Deep Learning DL and particle ph Final remarks

Initiate
NN models

200 epochs

Algorithm Felipe F. Freitas et. al JHEP 01
(2021) 076:
@ Randomly generate N models, by
pooling a list of hyper-parameters;

New NN models
“Daughters”

@ Train: Top 5 models are used to
breed daughter networks;

@ Add mutation probability. Train %
daughters and iterate the cycle. I e & ealisEn:
g Act as F+M
Nice advantages: &
@ Simplifies network construction. “Mutated”
Simple way to find the best i el

hyperparameters; DEugiiiers’ After 5 gen.

@ Straightforward way to maximize

distinct metrics.
Select best model




Deep Learning

The best neural model is chosen based on two distinct metrics

@ Asimov significance defined as

ZA:[2((8+b)1n<m>_Zln<1+b([;ﬁ2ig)>>]l/z

Loss function is defined as L = 1/(Z4 + €). € regularizes the loss function.
Adam Elwood and Dirk Kriicker arXiv:1806.00322

@ Accuracy with binary cross-entropy loss function
1N
L= _N Zyl IOg(in) —+ (1 - yi) 1Og(1 - pﬂi)v
i=1

with IV being the number of points, y the ground truth label (0 if
background and 1 if signal) and p,, the probability of being signal.



DL and particle physics

Single and pair-production topologies at the LHC. vy in the keV range and acts as

missing energy.
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For simplicity, we consider flavour opposite final states. Event selection via simple
cuts:

@ Charged leptons with pp > 25 GeV and |n] < 5;

@ Missing transverse energy Fp > 15 GeV;

@ Jets: AR=1.0, pr > 35 GeV and |n| < 5.
Event generation flow: SARAH — MadGraph — Pythia8 — Delphes — ROOT.

From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. Gongalves, Felipe F. Freitas, Anténio P.

Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076



DL and particle physics

- -
. — = —0.015 =
20.3 203 = ww 2 = wu
s s 4z 5 Wz
02 209 = azm | L0010 =R
s s k3
20,1 W L] | 000
0.0 0029 0 2 0.000g 200 100 00
Ty prie”) (GeV)
0.02
- -
F0.01 = =N 0.7 =
E-4 0.015) =4 ) wew = 0w
H B w20t 5 ez
50.010) £001 }» Sz 5050 % e
& 0,00 o 0,23 !I ‘
0.000— 200 100 00 0005 200 100 00 000 2 1
pr(i’) (Gev) MET (GeV) AR, ,

Feed the neural net high-level kinematics (mass distributions, pseudorapidity,
transverse momentum, etc) for signal/background topologies.
Some cuts may be imposed to reduce backgrounds — Unbalanced datasets!

@ Generate more Monte-Carlo: Computational inefficient;
@ Oversample minority classes (e.g. SMOTE algorithm N. V. Chawla et. al JAIR: Vol
16, Issue 1, Jan. 2002);

From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. Gongalves, Felipe F. Freitas, Anténio P.

Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076



DL and particle physics
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e Significance as a function of luminosity. 300 fb—' — Run-IlI;

@ Utilizing the Asimov metric in the genetic algorithm, we can already obtain
results above 50 for all three metrics. We can already probe them at
run-111 of the LHC.

From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. Gongalves, Felipe F. Freitas, Anténio P.
Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076



DL and particle physics

New physics at TeV order — Highly boosted decay products that needs to
separated from multijet background at hadron colliders;

Jet Images: Associate energy deposited in the calorimeter with a pixel in the
(n, @) plane [Luke de Oliveira et. al JHEP 07 (2016) 069].

@ Enhance classification with jet kinematics (multiplicity, mass, AR, ...);
@ Abstract Images: Richer substructure;

@ We have obtained efficiencies greater than only using kinematic data [Felipe
F. Freitas et. al EPJC 82, 826 (2022)].

From paper: Phenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets. J. Gongalves, Felipe
F. Freitas, Anténio P. Morais, Roman Pasechnik. doi: 10.1140/epjc/s10052-022-10799-8



DL and particle physics

Receiver operating characteristic Predicted confidence scores for samples

Significance vs Luminosity myy.q = 800 GeV/
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the LHC, even for systematics of
(e)  Kinematic + Abstract Images 50% !

From paper: Phenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets. J. Gongalves, Felipe
F. Freitas, Anténio P. Morais, Roman Pasechnik. doi: 10.1140/epjc/s10052-022-10799-8




Final remarks

To summarize ...
@ | have discussed how Deep learning algorithms can be used in collider
phenomenology of generic BSM models;

@ | shown these tools in action for various BSM models, including models with
vector-like fermions of both quark and lepton types;

@ For optimization of neural networks, | have presented a genetic algorithm

that best maximize the statistical significance;

@ In principle, the process itself is model-independent, in the sense that the
neural models are agnostic to the BSM details. They only need the data.
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Thank you for your attention
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