Machine Learning Algorithms and Particle Physics Searches

João Pedro Pino Gonçalves¹

Based on JHEP 01 (2021) 076, JHEP 01 (2022) 154 and EPJC 82, 826 (2022)

 1 Physics Department and Centre for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, Portugal.

3rd Workshop on Compact Objects, Gravitational Waves and Deep **Learning - University of Minho**

The Standard Model (SM) is the basis by which all subatomic interactions are described. **However**, some unanswered questions remain ...

- Inability to explain the observed particle spectra (family replication, masses and couplings hierarchies, neutrino masses);
- Lack of a Dark matter (DM) candidate;
- Hiearchy problem;
- \bullet $(g-2)_{\mu}$ anomaly, R_{K,K^*} anomalies, matter/anti-matter asymmetry;
- Naive quantization of gravity leads to a non-renormalizable theory, etc;

A simple observation \Longrightarrow SM is not the ultimate theory

The story of SM is incomplete, **but we have not found anything new!** That means

- New physics is heavy, i.e., of the TeV-PeV order (or beyond);
- New physics is weakly coupled to the SM, i.e., low couplings;

As constraints on new physics become increasingly tighter, computational resources become more and more important.

We need

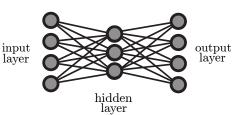
- Powerful, reliable and proven methods to deal with weak signals in the ocean of the SM background;
- The methods must be comfortable in dealing with large datasets.

Machine learning to the rescue!

Deep Learning (DL) \rightarrow Extracting high-level features from input data

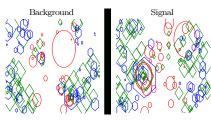
Universal approximation theorem [Kurt Hornik, Neural Networks. 4 (2): 251–257]

Approximate any function, for an arbitrary number of layers!



Detects small deviations in classes ⇒ Perfect for classfication tasks!

(a) For cats and dogs



(b) For detector images

```
neurons = 512
activ = 'sigmoid'
init1 = 'RandomNormal'
loss = 'binary crossentropy'
metric = 'accuracy'
a 1
     = 1.e-7
a 2
     = 1 e-7
alp = 0.1
nb classes = 5
def NN model():
    model = Sequential()
    #Input laver
    nn = model.add(Dense(neurons. input dim=X train.shape[1], kernel initializer=initl.
                   kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #2nd layer
    model.add(Dense(neurons, kernel_initializer=initl,
              kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #3rd layer
    model.add(Dense(neurons, kernel_initializer=initl,
              kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #4th layer
    model.add(Dense(neurons, kernel_initializer=initl,
              kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    # Output layer
    model.add(Dense(nb classes, init=initl , activation=activ ))
    model.compile(loss=loss.optimizer=Adam().metrics=[metric])
    return model
```

```
neurons = 512
activ = 'sigmoid'
init1 = 'RandomNormal'
loss = 'binary_crossentropy'
metric = 'accuracy'
a1 = 1.e-7
a2 = 1.e-7
alp = 0.1
nb classes = 5
```

```
• Number of neurons: Arbitrary;
```

- Activation functions: 10 + in Keras (with tunable parameters);
- Initializers: 10 + in Keras (with tunable parameters);

```
. . . .
def NN_model():
    model = Sequential()
    #Input layer
    nn = model.add(Dense(neurons, input_dim=X_train.shape[1], kernel_initializer=initl,
                   kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #2nd layer
    model.add(Dense(neurons, kernel_initializer=initl,
              kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #3rd layer
    model.add(Dense(neurons. kernel initializer=initl.
              kernel regularizer=regularizers.11 12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #4th laver
    model.add(Dense(neurons, kernel initializer=initl,
              kernel regularizer=regularizers.11 12(11=a1, 12=a2)))
    model.add(Activation(activ))
    # Output laver
    model.add(Dense(nb classes, init=initl , activation=activ ))
    model.compile(loss=loss.optimizer=Adam().metrics=[metric])
    return model
```

```
neurons = 512
activ = 'sigmoid'
init1 = 'RandomNormal'
loss = 'binary_crossentropy'
metric = 'accuracy'
a1 = 1.e-7
a2 = 1.e-7
a1p = 0.1
nb_classes = 5
```

A lot of free parameters to tune in architectural building

Calls for some optimization procedure \rightarrow **Genetic algorithms!**

```
def NN_model():
    model = Sequential()
    #Input layer
    nn = model.add(Dense(neurons, input_dim=X_train.shape[1], kernel_initializer=initl,
                   kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #2nd layer
    model.add(Dense(neurons, kernel_initializer=initl,
              kernel_regularizer=regularizers.11_12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #3rd layer
    model.add(Dense(neurons. kernel initializer=initl.
              kernel regularizer=regularizers.11 12(11=a1, 12=a2)))
    model.add(Activation(activ))
    #4th laver
    model.add(Dense(neurons, kernel initializer=initl,
              kernel regularizer=regularizers.11 12(11=a1, 12=a2)))
    model.add(Activation(activ))
    # Output laver
    model.add(Dense(nb classes, init=initl , activation=activ ))
    model.compile(loss=loss.optimizer=Adam().metrics=[metric])
    return model
```

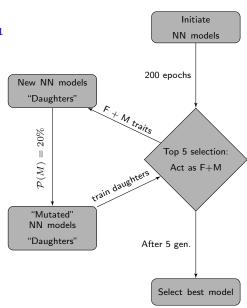
Notivation Deep Learning DL and particle physics Final remarks

Algorithm Felipe F. Freitas et. al JHEP 01 (2021) 076:

- Randomly generate N models, by pooling a list of hyper-parameters;
- Train: Top 5 models are used to breed daughter networks;
- Add mutation probability. Train daughters and iterate the cycle.

Nice **advantages**:

- Simplifies network construction.
 Simple way to find the best hyperparameters;
- Straightforward way to maximize distinct metrics.



The best neural model is chosen based on two distinct metrics

Asimov significance defined as

$$\mathcal{Z}_{A} = \left[2 \left((s+b) \ln \left(\frac{(s+b)(b+\sigma_{b}^{2})}{b^{2}+(s+b)\sigma_{b}^{2}} \right) - \frac{b^{2}}{\sigma_{b}^{2}} \ln \left(1 + \frac{\sigma_{b}^{2}s}{b(b+\sigma_{b}^{2})} \right) \right) \right]^{1/2}$$

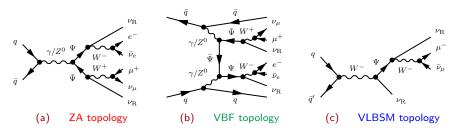
Loss function is defined as $L=1/(\mathcal{Z}_A+\epsilon)$. ϵ regularizes the loss function. Adam Elwood and Dirk Krücker arXiv:1806.00322

Accuracy with binary cross-entropy loss function

$$L = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(p_{\hat{y}_i}) + (1 - y_i) \log(1 - p_{\hat{y}_i}),$$

with N being the number of points, y the ground truth label (0 if background and 1 if signal) and p_{y_i} the probability of being signal.

Single and pair-production topologies at the LHC. ν_{R} in the keV range and acts as missing energy.



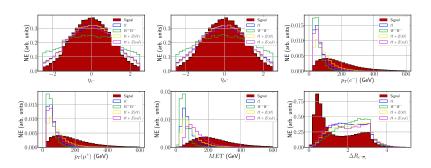
For simplicity, we consider flavour opposite final states. Event selection via simple cuts:

- Charged leptons with $p_T > 25$ GeV and $|\eta| \le 5$;
- $\hbox{$ @$ Missing transverse energy $\rlap/E_T > 15 GeV;}$

Event generation flow: SARAH \rightarrow MadGraph \rightarrow Pythia8 \rightarrow Delphes \rightarrow ROOT.

From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. <u>J. Gonçalves</u>, Felipe F. Freitas, António P. Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076

otivation Deep Learning DL and particle physics Final remark:

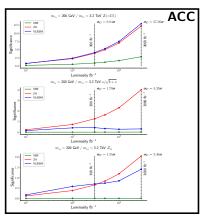


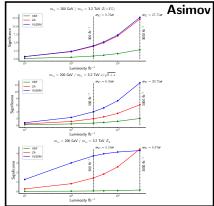
Feed the neural net high-level kinematics (mass distributions, pseudorapidity, transverse momentum, etc) for signal/background topologies.

Some cuts may be imposed to reduce backgrounds \rightarrow **Unbalanced datasets!**

- Generate more Monte-Carlo: Computational inefficient;
- Oversample minority classes (e.g. SMOTE algorithm N. V. Chawla et. al JAIR: Vol 16, Issue 1, Jan. 2002);

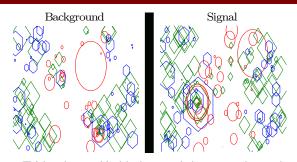
From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. Gonçalves, Felipe F. Freitas, António P. Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076





- Significance as a function of luminosity. $300 \text{ fb}^{-1} \rightarrow \text{Run-III}$;
- Utilizing the Asimov metric in the genetic algorithm, we can already obtain results above 5σ for all three metrics. We can already probe them at run-III of the LHC.

From paper: Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. Gonçalves, Felipe F. Freitas, António P. Morais, Roman Pasechnik. doi: 10.1007/JHEP01(2021)076



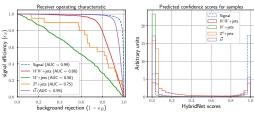
New physics at TeV order \rightarrow Highly boosted decay products that needs to separated from multijet background at hadron colliders;

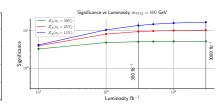
Jet Images: Associate energy deposited in the calorimeter with a pixel in the (η,ϕ) plane [Luke de Oliveira et. al JHEP 07 (2016) 069].

- Enhance classification with **jet kinematics** (multiplicity, mass, ΔR , ...);
- Abstract Images: Richer substructure;
- We have obtained efficiencies greater than only using kinematic data [Felipe F. Freitas et. al EPJC 82, 826 (2022)].

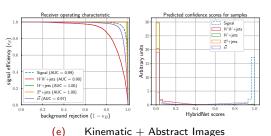
From paper: Phenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets. J. Gonçalves, Felipe F. Freitas, António P. Morais, Roman Pasechnik. doi: 10.1140/epjc/s10052-022-10799-8

Motivation Deep Learning DL and particle physics Final remarks





(d) Kinematic



- Focusing on VLQ signatures for decays into light jets.
- Use of Abstract Images heavily improves the accuracy of the neural network
- Can exclude VLQs at the high-luminosity/run-III phase of the LHC, even for systematics of 50%!

From paper: Phenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets. <u>J. Gonçalves</u>, Felipe F. Freitas, António P. Morais, Roman Pasechnik. doi: 10.1140/epic/s10052-022-10799-8

Notivation Deep Learning DL and particle physics Final remarks

To summarize . . .

- I have discussed how Deep learning algorithms can be used in collider phenomenology of generic BSM models;
- I shown these tools in action for various BSM models, including models with vector-like fermions of both quark and lepton types;
- For optimization of neural networks, I have presented a genetic algorithm that best maximize the statistical significance;
- In principle, the process itself is model-independent, in the sense that the neural models are agnostic to the BSM details. They only need the data.

Machine Learning Algorithms and Particle Physics Searches

Thank you for your attention

