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An introduction to gravitational waves

Sources of gravitational waves - Supernovae

**_ Nov. 6, 2014

Mar. 25, 2015

gy 4 »

Oct. 12; 2016

Nov. 12, 2015 Jl Apr. 8, 2016

esahubble.org




An introduction to gravitational waves

Sources of gravitational waves - Spinning neutron stars
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An introduction to gravitational waves

Sources of gravitational waves - Binary systems

Inspiral Merger Ring-
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® 90 candidates found so far!
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Gravitational wave detections

e 90 candidates found so far!
e Detectors will improve further

e Wholly new detectors are in the work



Challenges

e Detection rate will increase significantly!
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Challenges

Network GW events Joint GW-GRB events
Flat Gaussian | Flat Gaussian
HLVKI 768 814 14 15

Table 1. Number of GW events detected by second generation (2G) networks in 10 years, and the
expected GW-GRB coincidences obtained by assuming a GRB detector with the characteristics of
Fermi-GBM. We show detection rates for BNS populations generated using O2 rates corresponding
to both flat and Gaussian mass distributions.

E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore, and T. Regimbau, Cosmology and Dark Energy from Joint Gravitational
Wave-GRB Observations, J. Cosmol. Astropart. Phys. 2019, 015 (2019).
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Network GW events Joint GW-GRB events
Flat Gaussian | Flat Gaussian
HLVKI 768 814 14 15

Table 1. Number of GW events detected by second generation (2G) networks in 10 years, and the
expected GW-GRB coincidences obtained by assuming a GRB detector with the characteristics of
Fermi-GBM. We show detection rates for BNS populations generated using O2 rates corresponding
to both flat and Gaussian mass distributions.

Network GW events Joint GW-GRB events
Flat Gaussian Flat Gaussian

ET 621,700 688,426 | 389 (128) 511 (169)
ET+CE+CE | 5,420,656 7,077,131 | 644 (213) 907 (299)

Table 2. Number of GW BNS events detected by third generation (3G) networks in 10 years of
data taking (assuming a 80% duty cycle for each detector) and the corresponding GW-GRB coinci-
dences obtained by assuming a GRB detector with the characteristics of THESEUS-XGIS: numbers
in parenthesis show the number of sources with arcmin localisation. BNS populations are generated
using the O2 rates corresponding to ‘flat’” and *Gaussian’ mass distributions.

E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore, and T. Regimbau, Cosmology and Dark Energy from Joint Gravitational
Wave-GRB Observations, J. Cosmol. Astropart. Phys. 2019, 015 (2019).
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Challenges

e Detection rate will increase significantly!
e Current methods use extensive template banks
e \We must deal with large amounts of data efficiently
o Unmodeled searches
o Accelerated parameter estimation
o Fast template generation
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Machine Learning

e Algorithms can be trained to extract meaningful information from data.
e \ery efficient at runtime; computational cost concentrated in training process



Machine Learning

Deep Learning
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Deep Learning

e Neural networks are universal function approximators
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Deep Learning

e Neural networks are universal function approximators
e Can be trained for any task (in principle)
e Can be bayesian in nature!
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e We can reappropriate computer vision tools...
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DL applications to GW astronomy

e We can reappropriate computer vision tools... for classification
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Alvares, J.D., Font, J.A,, Freitas, F.F., Freitas, O.G., Morais, A.P., Nunes, S., Onofre, A., Torres-Forné, A., 2021. Exploring gravitational-wave detection and
parameter inference using deep learning methods. Class. Quantum Grav. 38, 155010. https://doi.org/10.1088/1361-6382/ac0455
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DL applications to GW astronomy

e We can reappropriate computer vision tools... for regression
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S



https://doi.org/10.1088/1361-6382/ac0455

Applications to GW astronomy

DL applications to GW astronomy

e We can reappropriate computer vision tools... for regression
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DL applications to GW astronomy

e Efforts ongoing to generate GW models with DL

Applications to GW astronomy
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McGinn, J., Messenger, C., Heng, |.S., Williams, M.J., 2021. Generalised gravitational burst generation with Generative Adversarial Networks. Class. Quantum Grav. 38, 155005.

https://doi.org/10.1088/1361-6382/ac09cc
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Summing up:

e GW astronomy is a growing field
e Amount of relevant data will increase
e DL has already proved promising for the future of GW astronomy



Thank you!
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