Neutrino flux and detector simulation (FLArE)

Jianming Bian, Wenjie Wu

University of California, Irvine

February 17, 2022

Neutrino flux

Felix Kling, et. al. <u>2105.08270</u> <u>Github</u>

FLArE10, 620m downstream from IP, 3000/fb

Jianming Bian, Wenjie Wu (UCI)

Weidong Bai, et. al. <u>2112.11605</u> Figure 12, Table 5

eta > 6.9 (radius 1 m at a distance of 480 m from IP)

Neutrino flux

Felix Kling, et. al. <u>2105.08270</u> <u>Github</u>

FLArE10, 620m downstream from IP, 3000/fb

Jianming Bian, Wenjie Wu (UCI)

x Luminosity / 2

Weidong Bai, et. al. <u>2112.11605</u> Figure 12, Table 5

eta > 6.9 (radius 1 m at a distance of 480 m from IP)

Neutrino flux

Jianming Bian, Wenjie Wu (UCI)

ν_{τ} spectrum (and rate) from two studies are different

- Different assumptions of pseudorapidity
- Different considerations of ν_{τ} production mechanism
- Large uncertainty

Cross section (up to 5 TeV) in GENIE

https://scisoft.fnal.gov/scisoft/packages/genie_xsec/v3_00_06/ genie_xsec-3.00.06-noarch-G1802a00000-k250-e5000-resfixfix.tar.bz2

Seems that this cross section is not promising when energy goes too high Flux drops quickly after 4 TeV, so I don't think it's a big issue for now

GENIE simulation: ν_{μ}

Felix Kling, et. al. <u>2105.08270</u>

GENIE simulation: ν_{τ}

Felix Kling, et. al. <u>2105.08270</u>

GENIE simulation: muon spectrum

Felix Kling, et. al. <u>2105.08270</u>

Jianming Bian, Wenjie Wu (UCI)

Muon energy spectrum, area normalized Muon from tau decay is softer

GENIE simulation: ν_{τ}

Weidong Bai, et. al. 2112.11605

GENIE simulation: muon spectrum

Jianming Bian, Wenjie Wu (UCI)

Bai, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 102.9 GeV RMS: 136.7 GeV

Kling, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 146.0 GeV RMS: 201.0 GeV

Muon energy spectrum, area normalized

Detector with a Hadron Calorimeter

Update

- Support of GENIE input: simulation of neutrino events
- An additional hadron calorimeter downstream
- Event display of deposited energy

Next steps

- Neutrino event simulation in Geant4: 3000 events/2.5 hrs
- **Detector optimization**

Detector with a Hadron Calorimeter EdepZX 10² EdepXY 10³ -100 -200 -300 10² -400 -500 t EdepZY -200 10² -300 -400 -500 **b** -500 -300 -200 -100 -100 -200 -300 -400

Jianming Bian, Wenjie Wu (UCI)

