

CERN TE-VSC meeting with University of Minho 5-5-2017

1000 associate members of personnel 12000 users from 70 countries Budget (2017) ~ 1100MCHF Contribution \propto GDP (PT ~1.1%) 1 political + 1 scientific representative / member state

General Director: Dr. Fabiola Giannotti in 2016-2020

The main goal of CERN: fundamental research by particle accelerators

Start the protons out here

5.05.2017

The main goal of CERN: fundamental research by particle accelerators

CERN

CERN core technical competences

Accelerators, detectors and computing

CERN Priorities

5.05.2017

CERN Vision & Strategy

Three main scientific pillars

Courtesy of José Miguel Jimenez

• Full exploitation of the LHC:

- Successful Run 2, LS2, and Run 3 start-up.
- Upgrade of LHC Injectors; on-track construction of HL-LHC.
- Scientific diversity programme serving a broad community:
 - ongoing experiments and facilities at Booster, PS, SPS and their upgrades.
 - participation in accelerator-based neutrino through CERN Neutrino Platform.

Preparation of CERN's future:

- vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness.
- design studies for future accelerators: CLIC, FCC (includes HE-LHC).
- future opportunities of diversity programme: "Physics Beyond Colliders".

Important milestone: update of the European Strategy for Particle Physics (ESPP) in **2019-2020**.

limenez

Our Dep. Head

CERN Vision & Strategy

LHC Roadmap

Vacuum, Surfaces and Coatings group's mandates

- Provide CERN's accelerators with the **required degree of vacuum**.
- Exploit the CERN's production facilities for surface treatments, including thin film coatings.
- Provide high-energy physics community with expertise in vacuum technology (from design to operation) and beam-surface interactions.
- Ensure **characterization measurements** in the field of analytical chemistry, surface analysis, and performance of vacuum material.
- Develop simulation, materials, instrumentation, and production technologies in the framework of **CERN's projects and studies**.

CERN's vacuum beamlines

Machine	Туре	Year	Energy	Bakeout	Pressure (Pa)	Length	Particles
Linac, Booster, ISOLDE, PS, n-TOF and A	D Complex					2.6 km !	
LINAC 2	linac	1978	50 MeV	lon pumps	10 ⁻⁷	40 m	р
ISOLDE	electrostatic	1992	60 keV	-	10 ⁻⁴	150 m	ions: 700 isotopes
REX-ISOLDE	linac	2001	3 Mev/u	partly	10 ⁻⁵ - 10 ⁻¹⁰	20 m	and 70 (92) elements
LINAC 3	linac	1994	4.2 MeV/u	lon pumps	10 ⁻⁷	30 m	ions
LEIR	accumulator	1982/2005	72 MeV/u	complete	10 ⁻¹⁰	78 m	pbar, ions
PSB	synchrotron	1972	1-1.4 GeV	lon pumps	10 ⁻⁷	157 m	P, ions
PS	synchrotron	1959	28 GeV	lon pumps	10 ⁻⁷	628 m	P, ions
AD	decelerator	?	100 MeV	complete	10 ⁻⁸	188 m	pbar
CTF3 complex	linac/ring	2004-09		partly	10 ⁻⁸	300 m	e
PS to SPS TL	Transfer line	1976	26 GeV	-	10 ⁻⁶	~1.3 km	P, ions
SPS Complex						15.7 km !	
SPS	synchrotron	1976		Extractions	10 ⁻⁷	7 km	p, ions
SPS North Area	Transfer line	1976			10 ⁻⁶ - 10 ⁻⁷	~1.2 km	
SPS West Area	Transfer line	1976	450 GeV			~ 1.4 km	
SPS to LHC TI2/8 Line	Transfer line	2004/2006		-		2 x 2.7 km	
CNGS Proton Line	Transfer line	2005				~730 m	
LHC Accelerator						~109 km !	
LHC Arcs (Beam x2, Magnets & QRL insul.)				-		2 x (2 x 25 km)	
LSS RT separated beams	- collider	2007	2 × 7 TeV	complete	< 10 ⁻⁸	2 × 3.2 km	1
LSS RT recombination						~ 570 m	p, ions
Experimental areas						~ 180 m	• *
Beam Dump Lines TD62/68	Transfer line	2006	7 TeV	-	10 ⁻⁶	2 × 720 m	
				High Vacuum 20 k		~20 km	
				UHV w/wo NEG ~		~ 57.5 km	~128 km !
				Insulat	ion vacuum	~ 50 km	

5.05.2017

CERN priorities: Full exploitation of the LHC

VSC contribution: extremely low operational faults

Fault time by system

Parent / Child issue	Issue count	Total duration [hh:mm]	Beam dump	
Parent 2		01:22	0	Based on data from LHC Cardiogram and BVO OP tracking
Child	0	NA	NA	Die of tracking

CERN priorities: Full exploitation of the LHC

VSC contribution: issue prevention

100 90 Number of tests 80 Number of non-conformity 70 Number of test 60 50 40 30 20 10 0 cPS (no LIU) ELENA HIE-ISOLDE LHC LHCb LIU-cPS LIU-PSBr LIU-SPS LINAC 4 SPS complex (no LIU) Machine/Experiment

CERN priorities: Upgrade of LHC injectors

VSC contribution: LINAC 4 installation

- □ Validation and installation of RF cavities
- Acceptance test of components
- Installation and commissioning of transfer line

160 MeV commissioning

CERN priorities: Upgrade of LHC injectors

VSC contribution: LINAC 4 installation

VSC contribution: impressive involvement

HW Manpower

Two most critical actions for TE-VSC:

- Mitigation of e-cloud in P2 and P8
- Production of new beam screens

VSC contribution: in-situ coating of LHC-b and ALICE IT areas

Length to be *in-situ* coated: ~45 meters per "string" (Q1, Q2, Q3, DFBX & D1) of LSS2 and LSS8. Development of a "**modular sputtering source**" that can be inserted in a 150 mm slot and pulled by cables along D1 and the triplets.

VSC contribution: in-situ coating of LHC-b and ALICE IT areas

VSC contribution: in-situ coating of LHC-b and ALICE IT areas

Baseline

Carbon coatings

Low SEY based on the electronic properties of the material

Alternative solution
Laser Engineered Surface Structure
LESS

Low SEY based on morphological effects

Agreement achieved in October. Feasibility study just started. Main deliverable: 2-m long LESS treated beam screen in mid-2018.

VSC contribution: new beam screen and interconnections

Triplet area beam screen

Beam screen / cold bore assembly

Mechanical behaviour during a quench

Heat transfer from the tungsten absorbers to the cryogenic cooling tube

Design and thermal simulations of the cold/warm transition in Q1

Mechanical design of vacuum line interconnection

Temperature field in the interconnection

CERN priorities: Scientific diversity programme

VSC contribution: ELENA

CERN priorities: Scientific diversity programme

VSC contribution: HIE-ISOLDE

CERN priorities: Scientific diversity programme

VSC contribution: other potential projects

HIE-ISOLDE phase 3: not yet approved

SHIP: not yet formally approved

OPENMED: not yet approved

Suitable for hadrontherapy studies

Proposed extraction line

5.05.2017

How have we contributed to the CERN priorities?

- Full exploitation of the LHC:
 - Successful Run 2, LS2, and Run 3 start-up.
 - Upgrade of LHC Injectors; on-track construction of HL-LHC.
- Scientific diversity programme serving a broad community:
 - ongoing experiments and facilities at Booster, PS, SPS and their upgrades.
 - participation in accelerator-based neutrino through CERN Neutrino Platform.
- **Preparation of CERN's future**:
 - vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness.
 - design studies for future accelerators: CLIC, FCC (includes HE-LHC).
 - future opportunities of diversity programme: "Physics Beyond Colliders".

Brief look at history

- Fundamental discoveries made with "beams" from radioactive sources (Rutherford) trigger the demand for higher energies
- New concepts allow sustained exponential development for more than 80 years and progress achieved through repeated jumps from saturating to new technologies
- From early 80's, more technology driven

progresses: superconductivity key technology of high-energy machines (RF and magnets)

Future Circular Collider Study

Future Circular Collider Study

Goal: CDR For the European Strategy Update 2019

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

16 T \rightarrow 100 TeV pp in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- e+e- collider (FCC-ee), as potential first step
- *p-e* (*FCC-he*) option, integration one IP, FCC-hh & ERL
- HE-LHC with FCC-hh technology

Collaborations

- Max-Planck-Institute + EPFL : Helicon plasma cell

- Argonne National Laboratories
- University of Florida
- LNLS, Campinas, São Paolo
- KEK, Photon Factory, Tsukuba

Examples of installation

Examples of installation

5.2017

5.05.2017

Visit at University of Minho

Simulations

- Molflow+, a Monte Carlo code, is now a standard for vacuum simulation.
- Recent developments have introduced time dependence of pressure profile.
- Synchrotron radiation is integrated in the code.

www.cern.ch