Contribution ID: 5 Type: **not specified**

Absolute neutrino mass scale and dark matter stability from flavour symmetry

Thursday 30 June 2022 17:45 (15 minutes)

We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry \mathbb{Z}_2 to the flavour non-Abelian symmetry $\Sigma(81)$, which can also automatically protect dark matter stability. In addition, $\Sigma(81)$ leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be $m_{\text{lightest}} \approx 7.5 \times 10^{-4}$ eV and the Majorana phases are correlated in such a way that $|m_{ee}| \approx 0.018$ eV. The model also leads to a strong correlation between the solar mixing angle θ_{12} and δ_{CP} , which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.

Authors: VICENTE, Avelino (IFIC - CSIC / U. Valencia); SRIVASTAVA, Rahul (Instituto de Fisica Corpuscular

(IFIC), Valencia - SPAIN); CENTELLES CHULIÁ, Salvador (MPIK (Heidelberg))

Presenter: CENTELLES CHULIÁ, Salvador (MPIK (Heidelberg))

Session Classification: Parallel Session II.2