IWARA2022 - 10th International Workshop on Astronomy and Relativistic Astrophysics

Contribution ID: 110

Type: Poster (virtual)

Scattering-state solutions to the Dirac spinors with negative-energy eignstates in a rotating spheroid

Based on our previous work of Fu et al.\(2020), we derive the rest seven scattering-state $(\chi^{(0)}, \phi^{(1)}, \chi^{(1)}, \phi^{(2)}, \chi^{(2)}, \phi^{(3)}$ and $\chi^{(3)}$) solutions to the Dirac equation when $E = -im \pm ik \approx -im$, and establish a relation between differential scattering cross-section, $\sigma_{i*}(p, \theta, \varphi)$, and stellar matter density, μ , using the long-wave approximation. It is found that the sensitivity of average scattering cross-sections $\bar{\sigma}_i(p, \theta)$ to the change in μ is proportional to μ^2 . We find that the average scattering amplitudes $\bar{f}_i(p, \theta)$, as well as average scattering cross-sections $\bar{\sigma}_i(p, \theta)$, are independent of the mass of particles, m, for four scattering-states\ $\chi^{(i)}$, i=0,1,2 and 3, while $\bar{f}_i(p, \theta)$ and $\bar{\sigma}_{i*}(p, \theta)$ depend on m, for the rest four scattering states, $\phi^{(i)}$, i=0,1,2 and 3. This work will be useful in understanding the properties of anti-Dirac spinors and the physical effects in a rotating spheroid.

Authors: CHEN, Ci Xing (Department of Astronomy, University of Sciences and Technology of China); TAN, Jun (School of Mathematics and Information Technology, Yuncheng University/Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters/Laboratory of Micro-Nano Electro Biosensors and Bionic Devices); ZHAO, Xin Jun (Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, Yili Normal University/Laboratory of Micro-Nano Electro Biosensors and Bionic Devices); GAO, Zhi-Fu (Xinjiang Astronomical Observatory)

Presenter: TAN, Jun (School of Mathematics and Information Technology, Yuncheng University/Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters/Laboratory of Micro-Nano Electro Biosensors and Bionic Devices)