Techniques in HAWC Observatory for classification of the showers detected

10th International Workshop on Astronomy and Relativistic Astrophysics September 8th, 2022

T. Capistrán (IA-UNAM), K. L. Fan (UMD), J.T. Linnemann (MSU), I. Torres (INAOE), P. Saz (HKU) and for HAWC Collaboration

HAWC Observatory

HAWC operates day and night, providing a large field of view for the observation of the highest energy gamma rays.

> Puebla, Mexico

Pico de Orizaba (5,626 m)

HAWC is located at 4,100 m above sea level, covering an area of 20,000 m².

High Altitude Water Cherenkov (HAWC)

CRs are deflected by magnetic field

Crucial issue in HAWC observatory

They are ~99.9% of the particles that arrive at the Earth

How to distinguish them? Looking at their differences

Compact

Run 2054, TS 584212, Ev# 226, CXPE40= 21.2, Cmptness= 28.3

Pretz, J. (2016), <u>https://doi.org/10.22323/1.236.0025</u>

Diffuse

Pretz, J. (2016), <u>https://doi.org/10.22323/1.236.0025</u>

$$LIC = \log_{10} \frac{1}{compactness} = \log_{10} \frac{CxPE_{40}}{nHit}$$

$$PINC = \frac{1}{N} \sum_{i=0}^{N} \frac{[\log_{10}(q_i) - \langle \log_{10}(q_i) - \sigma^2]}{\sigma^2}$$

- 10 fractional hit bin (B).
- 12 energy bins (ebin).

Note: Some bins are not used because they have poor statistic and they add more noise than signal. So, in this work, 67 bins are used.

Bins

Range (%)	ebin
4.4–6.7	2.50
6.7–10.5	2.75
10.5–16.2	3.00
16.2-24.7	3.25
24.7-35.6	3.50
35.6-48.5	3.75
48.5-61.8	4.00
61.8–74.0	4.25
74.0-84.0	4.50
84.0-100.0	4.75
	5.00
	5.25

How to verify their performance

Receiver Operating Characteristic (ROC) Curves

 ξ_{γ} Gamma efficiency

Hadron misidentification ξ_h rate

Gamma/hadron separation models

• Standard Cut (SC): $(LIC < C_L) \& (PINC < C_P)$

Alfaro, R. (2022), https://doi.org/10.1016/j.nima.2022.166984

Gamma/hadron separation models Machine Learning Technique (MLT):

- Learn from data
- A complex model is built

"Mathematical view"

 $R^n \to R^m$

Taken from https://ilearningx.huawei.com/portal/courses/HuaweiX+EBG2020CCHW1100087/about

Building the model

• Machine Learning Technique (MLT):

Boosted Decision Tree

Speckmayer, P., et al (2010) <u>https://doi.org/10.1088/1742-6596/219/3/032057</u>

Speckmayer, P., et al (2010) https://doi.org/10.1088/1742-6596/219/3/032057

Building the model

Machine Learning Technique (MLT):

Results: Testing on MC data

MLTs reports better performance on the first six B bins, while the SC is better for the rest bins

Alfaro, R. (2022), https://doi.org/10.1016/j.nima.2022.166984

MLTs show a real improvement over the SC, however in $\mathcal{B} = 6$ all models has similar results and at high energies bins the SC is the best.

Results: Testing on Real data (Crab Nebula)

Results: Testing on Real data

Crab Nebula

	Significance				Difference in % between				
В	SC1D	SC	NN	BDT	SC & SC1D	NN & SC1D	BDT & SC1D	NN & SC	BDT & SC
0	-	15.2	14.7	16.0	-	_	-	-3	5
1	26.9	27.6	27.5	28.22	3	2	5	0	2
2	37.8	44.1	44.6	46.4	17	18	23	1	5
3	59.2	62.4	66.1	72.0	5	12	22	6	15
4	70.6	69.7	76.3	76.2	-1	8	8	10	9
5	67.3	71.3	69.7	80.1	6	4	19	-2	12
6	52.3	61.5	48.3	66.0	18	-8	26	-21	7
7	39.1	47.7	49.2	50.3	22	26	28	3	5
8	27.6	32.8	35.1	34.8	19	27	26	7	6
9	28.2	28.7	31.3	31.3	2	11	11	9	9
1–9	144.0	155.7	156.9	170.7	8	9	19	1	10
0–9	-	156.3	157.5	171.3	-	-	-	1	10

Generally, the 2D models provide better results than SC1D.

Adding $\mathcal{B} = 0$ gives only a slight improvement. This bin requires a different approach if a useful signal is to be extracted from it.

Results: Testing on Real data

Markarian 421

	Significance				Difference in % between				
В	SC1D	SC	NN	BDT	SC &	NN &	BDT &	NN &	BDT &
					SC1D	SC1D	SC1D	SC	SC
0	-	8.46	8.28	8.40	-	-	-	-2	-1
1	11.9	13.2	12.5	13.0	11	5	10	-5	$^{-1}$
2	16.2	16.2	15.6	16.6	0	-4	2	-3	2
3	19.0	18.9	19.9	21.2	$^{-1}$	4	11	5	12
4	21.6	19.5	21.9	20.7	-10	2	-4	12	6
5	16.5	15.0	15.5	17.6	-9	-6	7	4	18
6	9.7	9.3	8.4	11.0	-4	-13	13	-9	18
7	4.2	5.6	7.2	6.9	34	72	65	28	23
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
1–9	35.9	35.3	36.0	38.6	-2	0	8	2	10
0–9	-	36.0	36.6	39.3	-	-	-	2	9
Crab Improvements									
1–9					8	9	19	1	10

Markarian 501

	Signific	ance			Difference in % between				
В	SC1D	SC	NN	BDT	SC & SC1D	NN & SC1D	BDT & SC1D	NN & SC	E 8 S
0	-	-	-	-	_	-	-	_	_
1	3.4	3.8	4.2	4.6	12	25	36	11	2
2	4.5	2.9	3.1	3.7	-36	-32	-17	6	2
3	4.7	5.3	4.5	4.2	14	-5	-10	-16	-
4	5.1	5.1	6.2	4.4	0	20	-14	20	-
5	4.1	3.8	4.3	5.7	-9	4	38	15	5
6	3.8	5.0	2.0	5.7	31	-47	50	-59	1
7	1.6	2.2	2.5	2.9	43	60	85	12	З
8	2.6	2.7	2.3	2.9	3	-10	12	-13	8
9	-	-	-	-	-	-	-	-	-
1–9	10.3	10.6	10.2	11.9	4	0	16	-4	1
Crab Improvements									
1–9	_				8	9	19	1	1

- & NN.
- hadron using MC data and real data.
- hadrons at low B bins and gammas at high B bins.
- model is BDT, It improved the results on the three sources.

Summary

Two new implementations were used to classify the shower detected by HAWC: BDT

• They are compared with the official HAWC technique to distinguish gamma from

• The 2D models generally have greater predicted Q factor. MLT recognizes better the

• Generally, the 2D models provide better results than SC1D using real data. The best

Thank you!

Backslides

Linear Correlation

Correlation Matrix (signal)

fhit	-13	6	31	-13	19	-8	100
LDFChi2	14	83	-62	-60	-47	100	-8
LDFAmp	19	-48	69	59	100	-47	19
disMax	15	-57	60	100	59	-60	-13
e _{NN}	7	-60	100	60	69	-62	31
PINC	15	100	-60	-57	-48	83	6
LIC	100	15	7	15	19	14	-13
	LIC	PINC	e _{NN}	disMa	LDFA	mp LDFC	fhit hiz

Linear correlation coefficients in % 100

(a) Signal.

Correlation Matrix (background)

(b) Background

NN		
<i>B</i> 0–2	<i>B</i> 3–5	<i>B</i> 6–9
PINC	PINC	PINC
LDFChi2	LDFChi2	LDFChi2
fHit	LiC	LDFAmp
e_{NN}	disMax	fHit
LiC	fHit	disMax
disMax	e_{NN}	LiC
LDFAmp	LDFAmp	e_{NN}

U

Ranking

BDT	BDT							
<i>B</i> 0–2	<i>B</i> 3–5	<i>B</i> 6-9						
LDFChi2	PINC	PINC						
LiC	LiC	LDFAmp						
PINC	LDFAmp	LDFChi2						
fHit	LDFChi2	LiC						
LDFAmp	fHit	fHit						
e_{NN}	disMax	disMax						
disMax	e_{NN}	e_{NN}						

