Contribution ID: 40

Type: Talk

## Supercritically charged objects and electron-positron pair creation

Monday 7 September 2020 12:44 (7 minutes)

We investigate the stability and  $e^+e^-$  pair creation of supercritically charged superheavy nuclei, udQMnuggets, strangelets, and strangeon nuggets based on the Thomas-Fermi approximation. The model parameters are fixed by reproducing masses and charge properties of these supercritically charged objects reported in earlier publications. It is found that udQM nuggets, strangelets, and strangeon nuggets may be more stable than <sup>56</sup>Fe at the baryon number  $A \geq 315, 5 \times 10^4$ , and  $1.2 \times 10^8$ , respectively. For those stable against neutron emission, the most massive superheavy element has a baryon number  $\sim$ 965, while udQM nuggets, strangelets, and strangeon nuggets need to have baryon numbers larger than 39, 433, and  $2.7 \times 10^5$ . The  $e^+e^-$  pair creation will inevitably start for superheavy nuclei with charge numbers  $Z \ge 177$ , for udQMnuggets with  $Z \ge 163$ , for strangelets with  $Z \ge 192$ , and for strangeon nuggets with  $Z \ge 212$ . A universal relation  $Q/R_e = (m_e - \bar{\mu}_e)/\alpha$  is obtained at a given electron chemical potential  $\bar{\mu}_e$ , where Q is the total charge and  $R_e$  the radius of electron cloud. The maximum number of Q without causing  $e^+e^-$  pair creation is then fixed by taking  $\bar{\mu}_e = -m_e$ . For supercritically charged objects with  $\bar{\mu}_e < -m_e$ , the decay rate for  $e^+e^-$  pair production is estimated based on the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation. It is found that most positrons are emitted at  $t \leq 10^{-15}$  s, while a long lasting positron emission can be observed for large objects with  $R \ge 1000$  fm. The emission of positrons and electron-positron annihilation from supercritically charged objects may be partially responsible for the short  $\gamma$ -ray burst during the merger of binary compact stars, the 511 keV continuum emission, as well as the narrow faint emission lines in X-ray spectra from galaxies and galaxy clusters.

**Authors:** Dr XIA, Cheng-Jun (Zhejiang University Ningbo Institute of Technology); Prof. XUE, She-Sheng (Sapienza University of Rome); Prof. XU, Ren-Xin (Peking University); Prof. ZHOU, Shan-Gui (Institute of Theoretical Physics, Chinese Academy of Sciences)

**Presenter:** Dr XIA, Cheng-Jun (Zhejiang University Ningbo Institute of Technology)

Session Classification: COSMOLOGY, DE, DM, COMPACT STARS, NSs, BHs, GWs, GRAVITY