

Baryon Number Violation Searches in Neutrino Experiments

Jennifer Raaf Fermi National Accelerator Laboratory 2018 September 11

Why search for baryon number violation?

- Testing fundamental symmetries is our job!
 - Conservation of baryon number is observed in Nature, but no compelling reason for it
 - Matter-antimatter asymmetry requires baryon number violation (BNV)
- There are well-motivated theories, such as Grand Unified Theories (GUTs) that suggest proton decay may exist and be observable
 - Make specific predictions for decay modes, lifetimes, branching ratios
 - Unify strong, weak, and EM forces into a single underlying force at high energies
 - Standard Model's SU(3) x SU(2) x U(1) is embedded within a larger gauge group
 - Fundamental forces are low energy manifestations of a unified force
 - Can neatly explain many of the puzzling things observed in Nature that are not currently explained by the Standard Model

🛠 Fermilab

- Quantization of electric charge
- Quantum numbers of quarks and leptons
- •

. . .

First Grand Unified Theory: SU(5)

VOLUME 32, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1974

Unity of All Elementary-Particle Forces

Howard Georgi* and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 10 January 1974)

Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5).

Had some nice consequences

(charge quantization, unified coupling,...)

but clearly did not get everything right -

It makes just one easily testable prediction, $\sin^2\theta_w = \frac{3}{8}$. It also predicts that the proton decays—but with an unknown and adjustable rate.

(value of weak mixing angle, also predicted massless neutrinos and magnetic monopoles)

Circumstantial Evidence for Grand Unification

‡Fermilab

A Neutrino Experimentalist's View of Theory

- Various types of models exist
 - Supersymmetric & non-SUSY, different gauge groups (SU(5), SO(10), ...)
- Lifetime predictions within those models are not precise
 - several orders of magnitude uncertainty
- Typically two proton decay modes are used as "benchmarks" for models:
 - p \rightarrow e⁺ π^{0} (mediated by a new heavy gauge boson)
 - $p \rightarrow \bar{\nu} K^+$ (supersymmetric dimension-5 operators)
- BUT, many other modes are also allowed, and since we don't know which model (if any) is correct, it is important to search for as many modes as possible

🛟 Fermilab

- Beyond $e^+\pi^0$ and $\bar{\nu}K^+$
 - Conserve B-L $(p \rightarrow antilepton + meson)$
 - Conserve B+L (p $\rightarrow \mu$ π ⁺ K⁺ and many others)
 - $\Delta B = 2$ (neutron \leftrightarrow anti-neutron oscillation, dinucleon decay)
 - 3-body decays $(p \rightarrow e^+ \nu \nu)$
 - Invisible decays $(n \rightarrow \nu \nu \nu)$
 - ...
- Even if no signal is seen, limits constrain the theories

Experimental Limits Constrain Theoretical Models

 Minimal SU(5) was ruled out long ago by Kamiokande and IMB measurements, but minimal SUSY SU(5) still viable...

Experimental Limits Constrain Theoretical Models

GUTs and Neutrino Experiments

- Neutrino experiments are an ideal place to search for proton decay & other BNV
 - Underground to attenuate cosmic rays
 - Very big, to collect large statistics (neutrino interaction cross sections ~10⁻³⁸ cm⁻²)

Neutrino Experiments for Nucleon Decay Searches

Water Cherenkov Super-Kamiokande Hyper-Kamiokande

Liquid Argon Time Projection Chamber DUNE

Most massive – superior for e⁺π⁰ Broad search capabilities Kaons below Cherenkov threshold Fine-grained detail Visible kaon track Heavy nucleus, no free protons

Liquid Scintillator KamLAND JUNO **ASDC/THEIA** 12 ns 2.2 11 10 102 103 104 Hit Time [ns] Clean timing signature Specialize in charged kaon (also invisible modes) 🛟 Fermilab

Times (ns)

Super-Kamiokande

50,000 tons of ultra-pure H_2O

(16 bound nucleons (8*p*, 8*n*) + 2 free *p*)

- 22,500 ton fiducial volume
- $-7.5 \times 10^{33} p + 6 \times 10^{33} n$ to observe

Location: Kamioka zinc mine Cosmic ray shielding: 2700 meters water equivalent (1000 m rock overburden)

Detection technique

- Cherenkov rings
- ~11,000 50-cm PMTs

Particle ID in Super-K

"Unrolled" view: like cutting open a can and laying it out flat

Neutrinos vs. Proton Decay in Super-K

Outer detector Inner detector	Neutrino interaction	Proton decay	Similar?	
v.	Invisible neutrino enters and interacts with proton or neutron of H_2O . Exiting particles make Cherenkov rings.	Proton or bound neutron of H ₂ O decays. Exiting particles make Cherenkov rings.	YES	
	Atmospheric neutrino energy range: from ~10's of MeVs to many TeVs	~1 GeV (mass of decaying proton or neutron)	Sometimes	
Neutrino interaction	Wide range of net momenta	Net momentum of outgoing particles should be near 0 (up to p _{Fermi} inside nucleus & correl.)	Sometimes	Proton Decay

‡ Fermilab

$\mathbf{p} \rightarrow \mathbf{e^{+}} \pi^{\mathbf{0}}$

Phys. Rev. D 95 012004 (2017)

- Fully contained
- Fiducial volume
- 2 or 3 rings
- All rings are EM showers
- π⁰ mass 85-185 MeV/*c*²

- No µ-decay electrons
- Mass range 800-1050 MeV/c²
- Net momentum < 250 MeV/c
- SK-IV only: veto event if n-capture

Super-K Data (306 kton-years)

$\mathbf{p} \longrightarrow \bar{\nu} \mathbf{K}^{+}$

This is a search for kaon decay at rest ($K \rightarrow \mu \nu$ and $K \rightarrow \pi^+ \pi^0$)

In Cherenkov detectors:

- Look for de-excitation gamma in time with nonshowering (muon) ring to identify events with leptonic decay mode of kaon (kaon ring is below Cherenkov threshold)
- Also perform search for hadronic decay mode of kaon, looking for π^+ ring in backward direction of 2 showering rings from π^0 decay

In LArTPC detectors:

- No detection threshold problem
- Use dE/dx to identify stopping kaon & decay products

In scintillator detectors:

- Fast and precise timing capability allows detection of signals from each of the subsequent particles in the decay chain
- Both the prompt and delayed signals have welldefined energy spectra; powerful background rejection

Conclusions and the Decades Ahead

- Testing Baryon Number Violation is an essential and high-priority objective of particle physics
- Ongoing searches are still useful: the larger experiments coming online in the next decade have high potential to observe BNV or further limit theories.

🛠 Fermilab

Even bigger detectors in the future: DUNE

18 2018/09/11 J.L. Raaf | 8th International Workshop on Astronomy and Relativistic Astrophysics

Even bigger detectors in the future: Hyper-Kamiokande

Two tanks, each tank: 260 kton total, 188 kton fiducial mass 40000 50-cm high QE PMTs 74 m diameter x 60 m high 1800 m.w.e. overburden

😤 Fermilab

19 2018/09/11 J.L. Raaf | 8th International Workshop on Astronomy and Relativistic Astrophysics

Neutron-Antineutron (n-nbar) Oscillation in Nuclei

😤 Fermilab

- Search for products of anti-neutron annihilation in the nucleus (many pions)
- Isotropic pion distribution with ~2 GeV total energy

20 2018/09/11 J.L. Raaf | 8th International Workshop on Astronomy and Relativistic Astrophysics

Recent exotic searches

 Generally more than an order of magnitude improvement & some searches have never been performed before now

7 Fermilab

Antilepton plus other mesons

							$n \rightarrow e^+ \pi^-$	$n \rightarrow \mu^+ \pi^-$
	Phys. Rev. D 96 012003 (2017)			100	1000			
Modes	Background	Candidate	Probability	Lifetime Limit		800		
	(events)	(events)	(%)	$(\times 10^{33}$ years) at 90% CL		600		
$p \rightarrow e^+ \eta$	$0.78 {\pm} 0.30$	0		10.		400	E A A A A A A A A A A A A A A A A A A A	
$p \rightarrow \mu^+ \eta$	$0.85 {\pm} 0.23$	2	20.9	4.7	()c)	200		
$p \to e^+ \rho^0$	$0.64 {\pm} 0.17$	2	13.5	0.72	le∕	1000		
$p \rightarrow \mu^+ \rho^0$	$1.30{\pm}0.33$	1	72.7	0.57	2	1000		
$p \to e^+ \omega$	$1.35 {\pm} 0.43$	1	74.1	1.6	ШШ	800		
$p \to \mu^+ \omega$	$1.09{\pm}0.52$	0	÷	2.8	ŝn t	600		
$n \rightarrow e^+ \pi^-$	0.41 ± 0.13	0	-	5.3	E E	400		
$n \rightarrow \mu^+ \pi^-$	$0.77 {\pm} 0.20$	1	53.7	3.5	С Ш	200		
$n \to e^+ \rho^-$	$0.87 {\pm} 0.26$	4	1.2	0.03	tal	1000		
$n \to \mu^+ \rho^-$	$0.96 {\pm} 0.28$	1	61.7	0.06	to	800		
total	8.6	12	15.7	-		600		
						400		
						400		
						200		
						0	<u></u>	250 500 750 1000
					total mass (MeV/ c^2)			

 $\rightarrow e^+ \pi^0$

Super-Kamiokande Run 999999 Sub 0 Event 112

Simple signature: back-to-back reconstruction of EM showers.

Efficiency ~45% dominated by nuclear absorption of π^0

Low background ~0.2 events/100 ktyr in SK

Relatively insensitive to PMT density.

$P \rightarrow nu K+$

No

Kaon is below Cherenkov threshold. This is a search for kaon decay at rest.

	γ-tag plus $π^+ π^0$	SK1	(20% coverage) SK2	SK3	(new electronics) SK4 \rightarrow w. n-cap	
	Efficiency	15.7 %	13.0 %	15.6 %	18.9 % → 17.5 %	
	Background rate (ev/100 kty)	0.28	0.63	0.38	0.4 → 0.19	
C	andidates, 306 kton yr (S	$\frac{\tau}{B} > 6.$	$61 \times 10^{33} \text{ y}$			
					÷, −e	;rm

⊿B = 2

violates B-L, needed for BAU

 \bar{d}

Baryon number violating processes studied at accelerators

Category	Example	Branching fraction	Experiment
Z decays	$Z \rightarrow p e$	< 1.8 x 10 ⁻⁶	OPAL
tau decays	$\tau \longrightarrow pbar \gamma$	< 10 ⁻⁵ – 10 ⁻⁷	LHCb, CLEO, Belle
Heavy meson decay	$B^{0} \longrightarrow \Lambda^{0} \; e^{+}$	< 10 ⁻⁵ – 10 ⁻⁸	CLEO, BaBar
Heavy baryon decay	$\Lambda^0 \longrightarrow \pi^- e^+$	< 10 ⁻⁵ – 10 ⁻⁷	CLAS
Top quark	tbar → b u e ⁻	< 10 ⁻³	CMS

But arguably (Marciano, 1995) some of these processes may be better constrained by nucleon decay.

nucleon decay is the most constraining

🔁 Fermilab

Nuclear Physics of Proton Decay

- Effective mass in ¹⁶0
- •Correlation with other nucleons
- Fermi motion by shell
- Initial position (Woods-Saxon)
- Nuclear de-excitation γ
- pion-nuclear interactions
 - Elastic Scattering
 - Charge Exchange
 - Absorption

🛠 Fermilab

Hole	Residual	States	(k)	E_{γ}	E_p	E_n	B(k)
$(p_{1/2})_p^{-1}$	g.s.	$\frac{1}{2}$ -	¹⁵ N	0	0	0	0.25
$(p_{3/2})_p^{-1}$	6.32	$\frac{3}{2}$ -	¹⁵ N	6.32	0	0	0.41
	9.93	$\frac{3}{2}$ -	¹⁵ N	9.93	0	0	0.03
	10.70	$\frac{3}{2}$ -	¹⁵ N	0	0.5	0	0.03
$(s_{1/2})_p^{-1}$	g.s.	1 ⁺	¹⁴ N	0	0	~ 20	0.02
	7.03	2+	¹⁴ N	7.03	0	~13	0.02
	g.s.	$\frac{1}{2}$ -	¹³ C	0	1.6	~11	0.01
	g.s.	Õ+	^{14}C	0	~21	0	0.02
	7.01	2+	^{14}C	7.01	~14	0	0.02
	g.s.	$\frac{1}{2}$ -	^{13}C	0	~11	~2	0.03
$(j)_{p}^{-1}$	others	-	many states	≤3-4			0.16

Neutron capture on hydrogen

