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Baryon Number Violation Searches in Neutrino Experiments



•  Testing fundamental symmetries is our job!
–  Conservation of baryon number is observed in Nature, but no compelling reason for it
–  Matter-antimatter asymmetry requires baryon number violation (BNV)

•  There are well-motivated theories, such as Grand Unified Theories (GUTs) 
that suggest proton decay may exist and be observable
–  Make specific predictions for decay modes, lifetimes, branching ratios
–  Unify strong, weak, and EM forces into a single underlying force at high energies

•  Standard Model’s SU(3) x SU(2) x U(1) is embedded within a larger gauge group
•  Fundamental forces are low energy manifestations of a unified force

–  Can neatly explain many of the puzzling things observed in Nature that are not currently 
explained by the Standard Model
•  Quantization of electric charge
•  Quantum numbers of quarks and leptons
•  ...

Why search for baryon number violation?
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Had some nice consequences
    (charge quantization, unified coupling,...) 
but clearly did not get everything right
    (value of weak mixing angle, also predicted massless neutrinos and magnetic monopoles)

First Grand Unified Theory: SU(5)
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Circumstantial Evidence for Grand Unification
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•  Various types of models exist
–  Supersymmetric & non-SUSY, different gauge groups (SU(5), SO(10), ...)

•  Lifetime predictions within those models are not precise
–  several orders of magnitude uncertainty

•  Typically two proton decay modes are used as “benchmarks” for models:
–  p ⟶ e+𝜋0 (mediated by a new heavy gauge boson)
–  p ⟶ 𝜈̄K+ (supersymmetric dimension-5 operators)

•  BUT, many other modes are also allowed, and since we don’t know which model 
(if any) is correct, it is important to search for as many modes as possible
–  Beyond e+𝜋0 and 𝜈̄K+

•  Conserve B-L       (p ⟶ antilepton + meson)
•  Conserve B+L      (p ⟶ 𝜇- 𝜋+ K+ and many others)
•  𝛥B = 2                  (neutron ⟷ anti-neutron oscillation, dinucleon decay)
•  3-body decays     (p ⟶ e+𝜈𝜈)
•  Invisible decays   (n ⟶ 𝜈𝜈𝜈)
•  ...

•  Even if no signal is seen, limits constrain the theories

A Neutrino Experimentalist’s View of Theory
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Experimental Limits Constrain Theoretical Models
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•  Minimal SU(5) was ruled out long ago by Kamiokande and IMB measurements, but 
minimal SUSY SU(5) still viable...



Experimental Limits Constrain Theoretical Models
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•  ...until kaon modes were searched for



•  Neutrino experiments are an ideal place to 
search for proton decay & other BNV
–  Underground to attenuate cosmic rays
–  Very big, to collect large statistics (neutrino 

interaction cross sections ~10-38 cm-2)

GUTs and Neutrino Experiments
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Primary cosmic ray 
(p, He, …) 

Neutrino-induced muons 
(from atmospheric neutrinos) 
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Neutrino Experiments for Nucleon Decay Searches
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50,000 tons of ultra-pure H2O
(16 bound nucleons (8p, 8n) + 2 free p)

–  22,500 ton fiducial volume
–  7.5 x 1033 p + 6 x 1033 n to observe

Super-Kamiokande
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Location: Kamioka zinc mine
Cosmic ray shielding: 2700 meters water 
equivalent (1000 m rock overburden)
Detection technique

–  Cherenkov rings 
–  ~11,000 50-cm PMTs



Particle ID in Super-K

2018/09/11 J.L. Raaf   |   8th International Workshop on Astronomy and Relativistic Astrophysics11

1 GeV electron 
“showering ring” 

1 GeV muon 
“non-showering ring” 

Outer detector Inner detector 

“Unrolled” view: like cutting open a can and laying it out flat 



Neutrinos vs. Proton Decay in Super-K
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Proton Decay Neutrino interaction  

Neutrino 
interaction 

Proton decay Similar? 
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neutron of H2O 
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outgoing particles 
should be near 0 
(up to pFermi inside 
nucleus & correl.) 

Sometimes 
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•   Fully contained
•   Fiducial volume
•   2 or 3 rings
•   All rings are EM showers
•   π0 mass 85-185 MeV/c2

p ⟶ e+ 𝜋0
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Super-Kamiokande I-IV data

•   No µ-decay electrons
•   Mass range 800-1050 MeV/c2

•   Net momentum < 250 MeV/c
•   SK-IV only: veto event if n-capture

Super-K Data 
(306 kton-years) 

Phys. Rev. D 95 012004 (2017)



This is a search for kaon decay at rest (K⟶𝜇𝜈  and  K⟶𝜋+𝜋0)p ⟶ 𝜈̄ K+
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Qbk 

Qres 

6 MeV 
gamma tag 

In Cherenkov detectors:
–  Look for de-excitation 

gamma in time with non-
showering (muon) ring to 
identify events with leptonic 
decay mode of kaon (kaon 
ring is below Cherenkov 
threshold)

–  Also perform search for 
hadronic decay mode of 
kaon, looking for 𝜋+ ring in 
backward direction of 2 
showering rings from 𝜋0 
decay

In LArTPC detectors:
–  No detection threshold 

problem 
–  Use dE/dx to identify 

stopping kaon & decay 
products

In scintillator detectors:
–  Fast and precise timing 

capability allows detection of 
signals from each of the 
subsequent particles in the 
decay chain

–  Both the prompt and 
delayed signals have well-
defined energy spectra; 
powerful background 
rejection
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•  Testing Baryon Number 
Violation is an essential and 
high-priority objective of 
particle physics

•  Searches for BNV via 
nucleon & dinucleon decay 
and n-n̄ oscillations have 
been negative so far, but 
have severely constrained 
theoretical models

•  Ongoing searches are still 
useful: the larger 
experiments coming online 
in the next decade have high 
potential to observe BNV or 
further limit theories.

Conclusions and the Decades Ahead
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Thank you! 
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Even bigger detectors in the future: DUNE
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Cavern excavation 
Cryostat Construction 

Far Detector Installation 
Far Detector commissioning 

Liquid argon time projection chamber 
Single and dual phase 
4 modules, each one 17-ktons 
40 kton fiducial mass 
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Even bigger detectors in the future: Hyper-Kamiokande
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Two tanks, each tank: 
 260 kton total, 188 kton fiducial mass 
 40000 50-cm high QE PMTs 
 74 m diameter x 60 m high 
 1800 m.w.e. overburden 



•  Search for products of anti-neutron annihilation in the nucleus (many pions)
•  Isotropic pion distribution with ~2 GeV total energy

Neutron-Antineutron (n-nbar) Oscillation in Nuclei
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•  Generally more than an order of magnitude improvement & some searches have 
never been performed before now

Recent exotic searches
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Antilepton plus other mesons
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P à nu K+
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Qbk 

Qres 

6 MeV 
gamma tag 

γ-tag plus π+π0 SK1	 (20%	coverage)		
SK2		

SK3	 (new	electronics)		
SK4	→ w.	n-cap	

Efficiency 15.7 % 13.0 % 15.6 % 18.9 %  → 17.5 % 

Background rate (ev/100 kty) 0.28 0.63 0.38 0.4 → 0.19  

No	candidates,	306	kton	yr	(SK	1+2+3+4	w.	n-cap):	

Kaon	is	below	Cherenkov	threshold.	This	is	a	search	for	kaon	decay	at	rest.	



𝛥B = 2
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nnbar oscillation 
(free neutron or inside nucleus) 

dinucleon decay 

violates B-L, needed for BAU 



Baryon number violating processes studied at accelerators
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But arguably (Marciano, 1995) some of these processes 
may be better constrained by nucleon decay.

Hou, Nagashima, Soddu hep-ph/0509006  

nucleon decay is the most constraining

Category Example Branching fraction Experiment 

Z decays Z ⟶ p e < 1.8 x 10-6 OPAL 

tau decays τ ⟶ pbar γ < 10-5 – 10-7 LHCb, CLEO, Belle 

Heavy meson decay B0 ⟶ Λ0 e+ < 10-5 – 10-8 CLEO, BaBar 

Heavy baryon 
decay 

Λ0 ⟶ π– e+ < 10-5 – 10-7 CLAS 

Top quark tbar ⟶ b u e–  < 10-3 CMS 
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Nuclear Physics of Proton Decay
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•  Effective mass in 16O 
•  Correlation with other nucleons 
•  Fermi motion – by shell 
•  Initial position (Woods-Saxon) 
•  Nuclear de-excitation γ
•  pion-nuclear interactions 

 - Elastic Scattering 
 - Charge Exchange 
 - Absorption 



Neutron capture on hydrogen
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SK-Gd construction 
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