

COOLING OF SMALL AND MASSIVE HYPERONIC STARS

Rodrigo Negreiros – UFF/Brazil

Laura Tolos – IFT/FIAS Frankfurt/Germany / ICE-IEEC – Barcelona/Spain

Mario Centelles – ICCUB – Barcelona/Spain

Angel Ramos – ICCUB – Barcelona/Spain

Veronica Dexheimer – KSU – Kent/USA

NEUTRON STARS

Weber, Hamil, Mimura and Negreiros (2011)

Table 2					
Magnetar Timing Properties					

	Name	P	Epoch	Ė	P Range	Methoda	В	Ė	$ au_{ m c}$	References
		(s)	(MJD)	$(10^{-11} \text{ s s}^{-1})$	(MJD)		(10^{14} G)	$(10^{33} {\rm erg \ s^{-1}})$	(kyr)	
	CXOU J010043.1-721134	8.020392(9)	53032	1.88(8)	52044-53033	A	3.9	1.4	6.8	1
• \(\Lambda\)	4U 0142+61	8.68832877(2)	51704	0.20332(7)	51610-53787	ED	1.3	0.12	68	2
	SGR 0418+5729	9.07838822(5)	54993	0.0004(1)	54993-56164	E	0.061	0.00021	36000	3
	SGR 0501+4516	5.76209653(3)	54750	0.582(3)	54700-54940	ED	1.9	1.2	16	4
	SGR 0526-66	8.0544(2)	54414	3.8(1)	52152-54414	Α	5.6	2.9	3.4	5
	1E 1048.1-5937	6.4578754(25)	54185.9	~ 2.25	50473-54474	Α	3.9	3.3	4.5	6
• `	1E 1547.0-5408	2.0721255(1)	54854	\sim 4.77	54743-55191	Α	3.2	210	0.69	7
-	PSR J1622-4950	4.3261(1)	55080	1.7(1)	54939-55214	Α	2.7	8.3	4.0	8
а	SGR 1627-41	2.594578(6)	54734	1.9(4)	54620-54736	Α	2.2	43	2.2	9, 10
	CXOU J164710.2-455216	10.610644(17)	53999.1	< 0.04	53513-55857	Α	< 0.66	< 0.013	>420	11
n angle, i (°)	1RXS J170849.0-400910	11.003027(1)	53635.7	1.91(4)	53638-54015	ED	4.6	0.57	9.1	12
	CXOU J171405.7-381031	3.825352(4)	55272	6.40(5)	54856-55272	Α	5.0	45	0.95	13
	SGR J1745-2900	3.7635537(2)	56424.6	0.661(4)	56406-56480	E	1.6	4.9	9.0	14
	SGR 1806-20	7.547728(17)	53097.5	~49.5	52021-53098	Α	20	45	0.24	15
	XTE J1810-197	5.5403537(2)	54000	0.777(3)	53850-54127	E	2.1	1.8	11	16
	Swift J1822.3-1606	8.43771958(6)	55761	0.0306(21)	55758-55991	ED	0.51	0.020	440	17
	SGR 1833-0832	7.5654084(4)	55274	0.35(3)	55274-55499	ED	1.6	0.32	34	18
ĕ	Swift J1834.9-0846	2.4823018(1)	55783	0.796(12)	55782-55812	E	1.4	21	4.9	19
Inclination	1E 1841-045	11.782898(1)	53824	3.93(1)	53828-53983	E	6.9	0.95	4.7	12
	SGR 1900+14	5.19987(7)	53826	9.2(4)	53634-53826	Α	7.0	26	0.90	20
	1E 2259+586	6.978948446(4)	51995.6	0.048430(8)	50356-52016	ED	0.59	0.056	230	21
	SGR 1801-23	• • •								
	SGR 1808-20									
	AX J1818.8-1559	• • •	• • •							
	AX 1845.0-0258	6.97127(28)	49272							22
	SGR 2013+34	•••	• • •	•••	•••	• • •	•••	•••	• • •	•••

GOALS

- Reconcile microscopic and macroscopic properties.
- Of particular interest is to obtain an EoS that satisfy the observed neutron star high mass as well as small radii.
- For this we need an EoS with softer symmetry energy.
- We also seek a microscopic description that agrees with observed neutron stars thermal data.

The Astrophysical Journal, 863:104 (12pp), 2018 August 10

© 2018. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aad049

Cooling of Small and Massive Hyperonic Stars

Rodrigo Negreiros¹, Laura Tolos^{2,3,4,5}, Mario Centelles⁶, Angels Ramos⁶, and Veronica Dexheimer⁷, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares S/N, Niterói, Brazil

² Institut für Theoretische Physik, Goethe Universität Frankfurt, Max von Laue Strasse 1, D-60438 Frankfurt, Germany

³ Frankfurt Institute for Advanced Studies, Goethe Universität Frankfurt, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main, Germany

⁴ Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, E-08193, Barcelona, Spain

⁵ Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

⁶ Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1,

E-08028 Barcelona, Spain

⁷ Department of Physics, Kent State University, Kent OH 44242 USA

**Received 2018 April 9; revised 2018 June 26; accepted 2018 June 27; published 2018 August 14

- Scalar and vector self-interaction as well as a mixed quartic vector interaction..
- Softening of the symmetric EoS around saturation.
- Softening of the EoS at high densities.
- Modification of density dependence of symmetry energy.

$$\mathcal{L} = \sum_{b} \mathcal{L}_{b} + \mathcal{L}_{m} + \sum_{l=e,\mu} \mathcal{L}_{l},$$

$$\mathcal{L}_{b} = \overline{\Psi}_{b}(i\gamma_{\mu}\partial^{\mu} - m_{b} + g_{\sigma b}\sigma - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\phi b}\gamma_{\mu}\phi^{\mu}$$

$$- g_{\rho b}\gamma_{\mu}I_{b}\rho^{\mu})\overline{\Psi}_{b},$$

$$\mathcal{L}_{m} = \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{\kappa}{3!}(g_{\sigma N}\sigma)^{3} - \frac{\lambda}{4!}(g_{\sigma N}\sigma)^{4}$$

$$- \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{\zeta}{4!}(g_{\omega N}\omega_{\mu}\omega^{\mu})^{4}$$

$$- \frac{1}{4}R^{\mu\nu}R_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}\rho^{\mu} + \Lambda_{\omega}g_{\rho N}^{2}\rho_{\mu}\rho^{\mu}g_{\omega N}^{2}\omega_{\mu}\omega^{\mu}$$

$$- \frac{1}{4}P^{\mu\nu}P_{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu},$$

$$\mathcal{L}_{l} = \bar{\psi}_{l}(i\gamma_{\mu}\partial^{\mu} - m_{l})\psi_{l},$$

Models	FSU2	FSU2R	FSU2H
m_{σ} (MeV)	497.479	497.479	497.479
m_{ω} (MeV)	782.500	782.500	782.500
m_{ρ} (MeV)	763.000	763.000	763.000
$g_{\sigma N}^2$	108.0943	107.5751	102.7200
$g_{\omega N}^{2}$	183.7893	182.3949	169.5315
$m_{\rho} \text{ (MeV)}$ $g_{\sigma N}^2$ $g_{\omega N}^2$ $g_{\rho N}^2$	80.4656	206.4260	197.2692
κ	3.0029	3.0911	4.0014
λ	-0.000533	-0.001680	-0.013298
ζ	0.0256	0.024	0.008
Λ_{ω}	0.000823	0.045	0.045
$n_0 (\text{fm}^{-3})$	0.1505	0.1505	0.1505
E/A (MeV)	-16.28	-16.28	-16.28
K (MeV)	238.0	238.0	238.0
$E_{\text{sym}}(n_0) \text{ (MeV)}$	37.6	30.7	30.5
L (MeV)	112.8	46.9	44.5

Improved ModelHyperonsSofter Symmetry energy

Model	Softer Symmetry	eneray	FSU2H		
m_{σ} (M		Cricigy	497.479		
m_{ω} (Me			782.500		
m_{ρ} (MeV)	763.000	763.000	763.000		
$g_{\sigma N}^{2}$	108.0943	107.5751	102.7200		
$g_{\omega N}^{2}$	183.7893	182.3949	169.5315		
$m_{\rho} \text{ (MeV)}$ $g_{\sigma N}^2$ $g_{\omega N}^2$ $g_{\rho N}^2$	80.4656	206.4260	197.2692		
κ	3.0029	3.0911	4.0014		
λ	-0.000533	-0.001680	-0.013298		
ζ	0.0256	0.024	0.008		
Λ_{ω}	0.000823	0.045	0.045		
$n_0 (\text{fm}^{-3})$	0.1505	0.1505	0.1505		
E/A (MeV)	-16.28	-16.28	-16.28		
K (MeV)	238.0	238.0	238.0		
$E_{\rm sym}(n_0)$ (MeV	V) 37.6	30.7	30.5		
L (MeV)	112.8	46.9	44.5		

MICRO → MACROSCOPIC PROPERTIES

THERMAL EVOLUTION

- Thermal evolution is driven by neutrino emissions from the core, and photon emission from the surface.
- Neutrino emissions strongly depend on the core composition.
- Depending on its mass, a neutron star may exhibit fast or slow cooling.

Thermal evolution is driven by neutrino emissions from the core, and photon emission from the surface.

- Neutrino emissions strongly depend on the core composition.
- Depending on its mass, a neutron star may exhibit fast or slow cooling.

THERMAL EVOLUTION

NEUTRON STARS COOL INSIDE OUT!

SUPERFLUIDITY

- Both protons and neutrons may form pairs inside the neutron star.
- We consider standard neutron singlet (crust) and triplet (core) pairing.

• For the proton singlet, we explore three possibilities: shallow, médium and

deep.

SUMMARY

- We have obtained an equation of state that satisfies the (current) constrains on mass and radii, as well as nuclear and HIC flow data.
- We have found good agreement with thermal properties, without the need to resort to pervasive proton-pairing.
- Our cooling results indicate that thermal data is better described by EoS with softer symmetry energy smaller radius.
- We thus have more evidence favoring smaller radii (softer symmetry energy).
- Cooling data regarding Cas A may have to be revised.