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Motivation

Einstein’s theory of general relativity is one of the most
successful scientific theories of all time.

Only with very careful measurements can we notice that
the Solar System is not described by Newtonian Gravity.

General relativity predicts its own incompleteness (for
black holes and the Big Bang).

Black hole entropy and the information paradox suggest
there may be something going on at (or near) the horizon.

With binary mergers, observation is now ahead of theory.



Testing gravity with GWs

 Compact and dynamic
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» Curvature scale corrections to gravity?
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Dutgoing flux

Flux correlations

Gravitational wave fluxes
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Image: Gupta, Krishnan, Nielsen, Schnetter PRD97 (2018) 084028



Modified GR solutions and pcGR

2M 1

—Gu — 1 f E dr
Full Kerr-like solution derived (Casper et al. 2012 for pcGR)
gir = —(1—%) : gw—% ,  9oo = 2,
9o = ((7"2+a )+%sm 9) sin® 0 |
Gt = Jot = —a% sin” 6

Form of ¢ is bound by Solar System tests, but
not by near horizon physics....yet



Solutions without horizons

Take a dimensionless b:—( r ) J gdr
parameter, b: M| 2M
Provides effective m(r)=M|1+b M)
correction to the mass M: r

For sufficiently large b values there are
no horizons and hence no black holes
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For n=2 and no spin, b_. = 16/27



Light ring and ringdown

Solve for light ring location:

Geodesic:

Null:

Final spin
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Post-Newtonian terms In inspiral

Expand gravitational wave phase as power series in
frequency domain:

W(f)=2., PaX(TM foy )"

PcGR correction:
20b(n+2)(n+1)(1+q")
3(n—4)(2n—5)(1+q)"

nPN term= (M f,, )"

For n=2, g=1, gives about a 25% correction
to the value of the GR 2PN term.



Bounds on post-Newtonian coefficients

GW150914 + GW151226
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Summary

e Gravitational wave observations allow tests of
near-horizon properties.

» Simple properties can be calculated in many
models, including pcGR.

 The LIGO observations already disfavour some
regions of pcGR parameter space (while still
consistent with vacuum GR).



Thank you

Further details: Nielsen and Birnholtz, Astron.Nachr. 339 (2018) no.4, 298-305



Deviations at the horizon

* Light return time
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Horizon correlations
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(circular) Kepler law,
r-cmpt of geodesic eqgn

r[m]

EMRIs, ISCO and EHT

Generalisation of

Fig 9 of Schdnenbach et al 2012

last stable orbit in GR
last stable orbit in pc-GR
constraint for general orbits

first stable orbit in pc-GR ====
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1: stable orbits in GR/pc-GR

III: no stable orbits in GR/pc—GR

1I: no stable orbits in GR
stable orbits in pc—-GR
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Fig 2 of Schénenbach et al 2014

ndard GR (b) pe-GR a = 0.0m
ndard GR (d) pe-GR a = 0.3m

Results from EHT due ~ 20189
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