Fermi/GBM's key role at the dawn of the era of multi-messenger astronomy

GW170817 ↔ GRB 170817 A

Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

GW170817 / GRB 170817A

The Fermi Mission

Launched June 11, 2008

The Fermi Observatory

Large Area Telescope (LAT)

Gamma-ray Burst Monitor (GBM)

GBM detectors

The Fermi Observatory

LAT (high-E spectrum)

BGOs (mid-E spectrum)

What does GBM see?

Quarterly trigger statistics over 10 years of the mission

Fermi GBM skymaps

The **GBM GRB online catalog** is updated **within 1 hour**: → http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html

Fermi GBM skymaps

Collaboration

August 17, 2017: Timeline

LIGO had good signal in both detectors, BUT:

→ Single-detector trigger

LIGO had good signal in

both detectors, BUT:

August 17, 2017: Timeline

August 17, 2017: Timeline

GBM Trigger

https://gcn.gsfc.nasa.gov/other/524666471.ferm

TITLE: GCN/FERMI NOTICE

NOTICE_DATE: Thu 17 Aug 17 12:41:20 UT

NOTICE TYPE: Fermi-GBM Alert

RECORD NUM: 1

TRIGGER NUM: 524666471

GRB_DATE: 17982 TJD; 229 DOY; 17/08/17 GRB_TIME: 45666.47 SOD {12:41:06.47} UT

TRIGGER_SIGNIF: 4.8 [sigma]
TRIGGER_DUR: 0.256 [sec]

E_RANGE: 3-4 [chan] 47-291 [keV]

ALGORITHM:

DETECTORS: 0,1,1, 0,0,1, 0,0,0, 0,0,0, 0,0,

LC_URL: http://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/triggers/2017/bn170817529/

COMMENTS: Fermi-GBM Trigger Alert.

COMMENTS: This trigger occurred at longitude, latitude = 321.53,3.90 [deg].

COMMENTS: The LC_URL file will not be created until ~15 min after the trigger.

The FIRST notice

GBM Trigger

moc@sledgehammer.nsstc.nasa.gov

Subject:BAA: New Trigger (524666471)

Trigger 524666471 (trigcat name:170817529) received at 2017.08.17 12:41:24 UT.

7:41 AM

First GBM On-board localization and classification

GBM Localization

More Reporting/Updates

Continued Reporting

FIRST public GCN

TITLE: GCN CIRCULAR

NUMBER: 21520

SUBJECT: GRB 170817A: Fermi GBM detection

DATE: 17/08/17 20:00:07 GMT

FROM: Andreas von Kienlin at MPE <azk@mpe.mpg.de>

A. von Kienlin (MPE), C. Meegan (UAH) and A. Goldstein (USRA) report on behalf of the Fermi GBM Team:

"At 12:41:06.47 UT on 17 August 2017, the Fermi Gamma-Ray Burst Monitor triggered and located GRB 170817A (trigger 524666471 / 170817529).

List of 15 host galaxies in LIGO/Virgo map volume GBM science data arrives. GCN circular published Giving GRB official name GRB 170817 A

GBM report of energetics & Initial False Alarm Rate

+6 hr +7 hr

+11 hr +12 hr

Electromagnetic Follow-up

+12-13 hr

+13 day

+18.5 day

Fermi's orbital path

- ◆ SAA high levels of charged particles
 - ➤ GBM: data stream ended 2 minutes post-trigger
 - ➤ Slightly different shape for LAT ⇒ switched off

GW170817 / GRB 170817A

MPE ⇒ SPI-ACS

• 91 BGO crystals: 512 kg

viewed by 181 PMTs

ESA Integral: 2002 –

BNS – short GRB Association

Temporal association

Measured time delay between GW and light: $\Delta t = 1.74 + -0.05 s$

Spatial association

Event rate (counts/s)

2250 2000

1500

1250

1500

Association at 5.3 o

Mer

Lightcurve from Fermi/GBM (10 – 50 keV)

Lightcurve from Fermi/GBM (50 – 300 keV)

BNS – short GRB Association

Measured time delay
between GW and light: $\Delta t = 1.74 +/- 0.05 \text{ s}$ star merger progenitor is
predicted to be within a few
seconds after the merger

- Central engine is expected to form within a few seconds
- Jet propagation delays are at most of the order of the sGRB duration [Finn+1999; Abadie+2012 and references therein]

The Speed of Gravity

The time delay can help constrain the speed difference:

$$\Delta v = v_{GW} - v_{EM}$$

- Fractional speed difference: $\frac{\Delta v}{v_{EM}} \approx \frac{v_{EM}\Delta t}{D}$
- Conservative estimate, assuming:
 - 1. Distance D = 26 MpC (lower bound GW 90% credible interval)
 - 2. GWs and gamma-rays emitted at same time ($\Delta t = 1.74 \text{ s}$) OR gamma-rays emitted 10 s after GWs ($\Delta t = 10 \text{ s}$)
 - ⇒ Gravitational waves travel at c to within one part in one quadrillion

$$-3 \times 10^{-15} \le \frac{\Delta v}{v_{EM}} \le 7 \times 10^{-16}$$

Rules out some alternative general relativity theories

- Two classes of GRBs: short (mergers) and long (collapsars)
- ◆ These two classes are also spectrally different: short-hard and long-soft

GBM temporal analysis results

- ◆ GRB 170817A is 3 times more like to be a <u>short GRB</u> than a long GRB, although it is <u>spectrally softer</u> than many sGRBs
 - Excluding the soft tail makes this classification far more certain

Comparison with Catalogs

Standard GBM Catalog analysis

- Average short GRB by fluence
- Lower third in 64 ms peak flux

GBM spectral analysis results:

- → two components!
- Main peak
 - ~0.5 s single pulse, no substructure
 - Comptonized model
 - ► Epeak ~220 keV
- Soft tail
 - ~1 s, distinct component?
 - Blackbody model
 - ▶ kT ~10 keV
- ◆ GRB 150101B
 - One of the closest short GRBs
 - z = 0.134
 - A second nearby event with a short hard spike and a soft tail
 - Burns et al. 2018 ApJ, L34

Abbott+2017 ApJ 848, 13

GBM energetics results

- Estimated peak luminosity and isotropic-equivalent energy is
 2-3 orders of magnitude lower than previous observations
- Why the large gap? Malmquist bias
 - > We see bright things far away that look weak, bright things nearby that look bright, and weak things nearby that look weak
 - → We can't see weak things far away...

- Observations: ordinary GRB
- Distance information: very dim GRB
- **◆** GRB **Observing Scenarios**:
 - ➤ GW data restricts viewing angle < 56 deg off-axis
 - Assuming the association with NGC 4993, viewing angle < 36 deg off-axis</p>
 - Afterglow observations of GRB 170817A, 200-300 days post-merger show a turnover in the temporal decay from X-ray to radio that appears to favor the structured jet scenario over the cocoon scenario (Alexander et al. 2018)

Scenario iv: Intrinsically Dim Scenario i: Uniform Top-hat Jet Scenario ii: Structured Jet Scenario iii: Uniform Jet + Cocoon **Rotation Axis Rotation Axis Rotation Axis** Viewing Angle **Viewing Angle** Viewing Angle Uniform Uniform Uniform Abbott+2017 ApJ 848, Core Core Core **Doppler Beaming** Cocoon Structured into Jet Sightline **Central Engine** Central Engine **Central Engine**

Conclusions

Detectors like GBM are efficient detectors of counterparts to GWs

- No pointed observations required
- Observing large fraction (~67%) of the sky
- Continuously observing (~15% downtime)
- In normal operations mode, these detectors produce GW counterparts for free!

Sub-threshold offline searches of data can uncover even weaker events that didn't trigger GBM

Could have detected GRB 170817A at about twice the distance

Other candidate: GRB150101B

The search of the full GBM sGRB population is the subject of an ongoing study

GBM and the high-energy community are looking forward to make many more key discoveries in the coming years!

→ Design and build more detectors like this!

Fermi's Gamma-Ray Burst Monitor wins 2018 Rossi Prize

High Energy Astrophysics Division

Bruno Rossi prize

The Rossi Prize is awarded annually in honor of Bruno Rossi
"for a significant contribution to High Energy Astrophysics
with particular emphasis on recent, original work."

Joint Detection Rates: GBM and LIGO/Virgo

sGRBs at <40 Mpc are rare!

- Expectations for O3 (2019):
 - ➤ 1 50 BNS/yr uncertainty on detector sensitivities during that run
 - ⇒ 0.1 1.4 joint BNS-sGRB/yr
- At design sensitivity:
 - ▶ 6 120 BNS/yr
 - ⇒ 0.3 1.7 joint BNS-sGRB/yr

GBM preparation for O3:

 Overall optimization of the targeted and untargeted search search

Predicted detection rates per year as a function of redshift. The 4 curves are normalized by imposing 40 triggered SGRB/yr

Fermi GBM untargeted searches

- ◆ Since 2013: Development of automated search algorithms for untriggered transient sources (POC: M.S.Briggs)
 - Magnetar burst (~200), TGFs (> 1000), other Galactic sources (>100), Short GRBs (sGRBs)
 - CTTE data search over **4 energy ranges and 10 timescales** (0.064 2.8 s)
 - Uses all 12 Nal detectors and flags candidates that meet a pre-defined count rate threshold in "legal" detector pairs in 50-300 keV
 - Improved spline background can also find some long GRBs
 - Standard GBM **localization** technique (uncertainties 10–40 deg, (68%))
 - Fast, efficient, runs over a complete hour of data as it is downlinked
- Since 2017: automated GCNs can trigger follow-up observations https://gcn.gsfc.nasa.gov/fermi_gbm_subthreshold_archive.html

Fermi-GBM Subthreshold Triggers													
TRIGGER	OBSERVATION												
TrigNum 1	Date	Time UT	(J2000)	Dec (J2000) [deg]	Error [deg]		Spec	Туре	Rel	URLs	Comments		
<u>548485652</u> 1	18/05/20	05:07:27.02	269.880	-60.430	17.92	1.407	1	0	2	HEALPIX MAP LC	Fermi-GBM Subthreshold. This Notice was ground-generated		
548482684	18/05/20	04:17:59.94	297.580	-0.700	15.38	0.192	1	0	2	HEALPIX MAP LC	Fermi-Gib. Preshold. This Notice was ground-generated		
548385290	18/05/19	01:14:45.61	266.500	+45.550	11.24	1.407	1	0	8	HEALPIX MAP LC	Fermi-GBM Subthreshold. This Notice was grouperated		
548326303	18/05/18	08:51:38.92	155.080	-33.870	17.89	1.024	1	0	2	HEALPIX MAP LC	Fermi-GBM Subthreshold. This Notice was ground-generated		

Additional ~100 GRBs/yr

(verification)

Fermi GBM targeted searches

- Targeted search in CTTE data
 (Blackburn+2015, Goldstein+2016)
 - Search for coherent signals in all detectors
 - Seeded with a time of interest and optionally a sky map (prior)
 - Assume spectral templates
 - Convolve assumed spectrum with detector responses, calculated over the entire sky
 - Expected signal in count rate compared to observed count rate
 - Very powerful but expensive

- → Intended to be follow-up search for multi-messenger events
- → Many Improvements during O1 and O2: Various bug fixes, better background estimation, more realistic hard spectral template

GW 170817 LIGO Factsheet

LIGO-Hanford	LIGO-Livingston	Virgo		
observed by	H, L, V	inferred duration from 30 Hz to 2048 Hz**	~ 60 s	
source type	binary neutron star (NS)			
date	17 August 2017	inferred # of GW cycles from 30 Hz to 2048 Hz**	~ 3000	
time of merger	12:41:04 UTC	initial astronomer alert	27 min	
signal-to-noise ratio	32.4	latency*		
false alarm rate	< 1 in 80 000 years	HLV sky map alert latency*	5 hrs 14 min	
distance	85 to 160 million	HLV sky area [†]	28 deg ²	
distance	light-years	# of EM observatories that	~ 70	
total mass	2.73 to 3.29 M _®	followed the trigger	gamma-ray, X-ray, ultraviolet, optical, infrared, radio	
primary NS mass	1.36 to 2.26 M _☉	also observed in		
secondary NS mass	0.86 to 1.36 M _☉	also observed in		
mass ratio	0.4 to 1.0	host galaxy	NGC 4993	
radiated GW energy	> 0.025 M _® c ²	source RA, Dec	13h09m48s, -23°22'53"	
radius of a 1.4 M _☉ NS	likely ≤ 14 km	sky location	in Hydra constellation	
effec <mark>tive</mark> spi <mark>n</mark> parameter	-0.01 to 0.17	viewing angle (without and with host	≤ 56° and ≤ 28°	
effective precession spin parameter	unconstrained	galaxy identification) Hubble constant inferred		
GW speed deviation from speed of light	< few parts in 10 ¹⁵	from host galaxy identification	62 to 107 km s ⁻¹ Mpc ⁻¹	