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Towards quantum gravity

• General Relativity (GR): Einstein, 1915.

• Physical singularities for high curvatures!

• Way out: GR is not valid at all scales.

• The “true” gravity theory should coincide with GR in the 

large distances & low energy realm.

• Natural extension via higher-derivatives (curvature-squared

terms), required already in the semiclassical approach.

• Fourth-order gravity is renormalizable (but contains a 

massive spin-2 ghost) [Stelle, PRD 77]



Polynomial higher-derivative gravity

• Super-renormalizable HDG [Asorey, López & Shapiro, Int. Jour. Mod. Phys. A,

1997]

• An attempt to move the ghost further to the UV region

• Particle content: graviton and k+1 massive particles for each spin

• Actually, ghosts and healthy modes alternate: 



• Remarkable quantum properties:

❖ The theory is super-renormalizable…

▪ Propagators behave like  ~(momentum)
–(2k+4)   

in the UV 

limit.

▪ Power counting yields, to the most divergent diagrams:

𝐷 = 4 + 2𝑘 − 2𝑘𝑝

k = 1: divergences for 1, 2 and 3 loops;

k = 2: divergences for 1 and 2 loops;

k ≥ 3: divergences for 1 loop.

Counterterms have at most 4 derivatives.

▪ If 𝑘 is odd ≥ 1 it is possible to have all massive poles complex, 

and the S-matrix becomes unitary in the Lee-Wick sense.            

[Modesto & Shapiro, PLB 2016]

❖ …and Lee-Wick unitary



[Krasnikov, 1987; Kuz’min, 1989; Tomboulis, 1997; 

Modesto, PRD 2012; Biswas, Gerwick, Koivisto & Mazumdar, PRL 2012]

▪ (Super-renormalizable), non-singular Newtonian 

limit, ghost-free at the tree-level.

▪ Quantum corrections can lead to an infinite number 

of ghosts, all of them complex. [Shapiro, PLB 2015]

❖ Other possibility for dealing with (avoiding) ghosts: 

non-local theories

➢ Higher-derivatives and the role they play should be investigated.



Classical and quantum singularities I: Newtonian potential

❖ Is renormalizability related to the cancellation of the 

Newtonian singularity? [Accioly, Helayël-Neto et al., IJMPD 2013; 

Modesto, Paula-Netto & Shapiro, JHEP 2015; Shapiro, PLB 2015]

• Stelle, 1977: four derivatives (𝑅 + 𝑅2 + 𝑅𝜇𝑣
2

), finite potential

• Modesto, Paula-Netto & Shapiro, 2015: 𝑅 + 𝑅𝐹1 □ 𝑅 + 𝑅𝜇𝑣𝐹2 □ 𝑅𝜇𝜈

[with real poles; renormalizable models, polynomials 𝑭𝟏,𝟐 of the same order] 

𝑉 = 𝑀𝐺 −
1

𝑟
+
4

3

𝑒−𝑚2𝑟

𝑟
−
1

3

𝑒−𝑚0𝑟

𝑟

𝑉 = 𝑀𝐺 −
1

𝑟
+
4

3

𝐶2(𝑟)

𝑟
−
1

3

𝐶0(𝑟)

𝑟
𝐶0,2 𝑟 = 1 + 𝒪(𝑟)with



❖ Is renormalizability related to the cancellation of the 

Newtonian singularity?



• BLG, PLB 2017: general model of the type 𝑅 + 𝑅𝐹1 □ 𝑅 + 𝑅𝜇𝑣𝐹2 □ 𝑅𝜇𝜈

Classical and quantum singularities I: Newtonian potential



❖ Is renormalizability related to the cancellation of the 

Newtonian singularity?

➢ The Newtonian singularity can be cancelled even in non-

renormalizable models.

➢ To cancel the singularity it suffices to have at least one massive mode 

in each sector.

➢ Hence, the simplest form (avoiding tachyons) is Stelle’s 4
th

order 

(renormalizable) gravity.

[BLG, Phys.Lett.B 766 (2017) arXiv:1609.05432]

Classical and quantum singularities I: Newtonian potential



Classical and quantum singularities II: Curvature

❖ Stelle’s 4
th

order gravity has a finite Newtonian potential but still 

has curvature singularities [Stelle, 1978; Lü, Perkins, Pope & Stelle, 2015]

❖ Isotropic static spherically symmetric metric:

Kretschmann scalar:



➢ At least 4 derivatives:  finite  Newtonian potentials.

➢ At least 6 derivatives:  regular  Newtonian limit.

[BLG & Paula-Netto, arXiv: 1806.05664]

❖ Linearised equations of motion + delta source



➢ Divergences are softened when going from 2 to 4 and to

6+ derivatives:

➢ Non-renormalizable → renormalizable → super-renormalizable

➢ Singular potential and curvature → finite potential → finite

potential and regular curvature



Spherical collapse of small masses

[Frolov, Zelnikov & Paula-Netto, JHEP 2015; Frolov, PRL 2015]

• Gyraton: apply a boost to Newtonian limit solution and take

the Penrose limit (keeping relativistic mass constant).

• Dominant contribution comes from the spin-2 sector.

• Collapsing thin null shell: spherical superposition of gyratons.

• Collapsing thick null shell: spherical superposition of thin shells.

Density at the origin:

Field depends on

For GR:



Spherical collapse of small masses

[Frolov, Zelnikov & Paula-Netto, JHEP 2015; Frolov, PRL 2015]

For polynomial HDG:

• Gyraton: apply a boost to Newtonian limit solution and take

the Penrose limit (keeping relativistic mass constant).

• Dominant contribution comes from the spin-2 sector.

• Collapsing thin null shell: spherical superposition of gyratons.

• Collapsing thick null shell: spherical superposition of thin shells.

Density at the origin:

Field depends on



6th- and higher-order models:

4th-order gravity:

• Kretschmann scalar :

• It is also possible to show that for a general polinomial higher-

derivative gravity there is a mass gap for the formation of mini 

black holes. [Frolov, PRL 2015]

[BLG & Paula-Netto, arXiv: 1806.05664]



Other developments

• Phenomenological aspects of higher-derivatives

• Bending of light

Accioly, BLG & Shapiro, PRD 2017; BLG & Shapiro, PLB 2018;

• Torsion balance experiments of the inverse-square force 

law: complex poles introduce oscillations in the potential

BLG, PLB 2017; Perivolaropoulos, PRD 2017; Boos, 2018.

• Gravitational seesaw-like mechanism, to avoid the Planck 

suppression

Accioly, BLG & Shapiro, EPJC 2017.



Summary & Perspectives

• Theories with more than four derivatives in both spin-2 and spin-0 

sectors have not only a finite Newtonian potential, but also a regular 

non-relativistic limit.

• Generalization of previous consideration [Frolov, PRL 2015] on the

collapse of null shells, so as to account for the possibility of complex

and degenerate poles. Regular solution for theories with more than

four derivatives; mass gap.

• This contrasts to Stelle’s fourth-order gravity [Stelle, GRG 1978;  Lü, Perkins,    Pope 

& Stelle, PRL 2015, PRD 2015].

• Theories with 6+ derivatives seem to share the same regularity properties

of the non-local ghost-free theories. [Frolov, PRL 2015; Buoninfante, Koshelev, 

Lambiase, Marto & Mazumdar, JCAP 2018; Boos, Frolov & Zelnikov, PRD 2018; Frolov & Zelnikov, 

PRD 2016; Edholm, Koshelev & Mazumdar, PRD 2016]

• Motivation for the investigation of the full theory (non-linear regime), e.g.,

• Numerical search of spherically symmetric solutions in theories with 6, 

8 and 10 derivatives only found regular solutions [Holdom, PRD 2002].

• Applications to astrophysics and astroparticle physics.


