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Towards quantum gravity

* General Relativity (GR): Einstein, 1915.
* Physical singularities for high curvatures!

* Way out: GR is not valid at all scales.

* The “true” gravity theory should coincide with GR in the
large distances & low energy realm.

* Natural extension via higher-derivatives (curvature-squared
terms), required already in the semiclassical approach.
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* Fourth-order gravity is renormalizable (but contains a

massive spin-2 ghost) [stelle, PRD77] 1 1
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Polynomial higher-derivative gravity

* Super-renormalizable HDG [Asorey, Lopez & Shapiro, Int. Jour. Mod. Phys. A,
1997]
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* An attempt to move the ghost further to the UV region
* Particle content: graviton and &+1 massive particles for each spin

* Actually, ghosts and healthy modes alternate:

2 2 2 2



* Remarkable quantum properties:

¢ The theory is super-renormalizable...

= Propagators behave like ~(momentum)-44) in the UV
limit.
= Power counting yields, to the most divergent diagram:s:

D =4+ 2k — 2kp

k = 1: divergences for 1, 2 and 3 loops;
k = 2: divergences for 1 and 2 loops;
k = 3: divergences for 1 loop.

Counterterms have at most 4 derivatives.

¢ ...and Lee-Wick unitary

» If kisodd = 1t is possible to have all massive poles complex,

and the S-matrix becomes unitary in the Lee-Wick sense.
[Modesto & Shapiro, PLB 2016]



% Other possibility for dealing with (avoiding) ghosts:

non-local theories
[Krasnikov, 1987; Kuz’'min, 1989; Tomboulis, 1997;

Modesto, PRD 2012; Biswas, Gerwick, Koivisto & Mazumdar, PRL 2012]
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= (Super-renormalizable), non-singular Newtonian
limit, ghost-free at the tree-level.

= Quantum corrections can lead to an infinite number
of ghosts, all of them complex. [Shapiro, PLB 2015]

» Higher-derivatives and the role they play should be investigated.



Classical and quantum singularities 1: Newtonian potential

* Is renormalizability related to the cancellation of the

Newtonian singularity? [Accioly, Helayél-Neto et al., /MPD 2013;
Modesto, Paula-Netto & Shapiro, JHEP 2015; Shapiro, PLB 2015]

* Stelle, 1977: four derivatives (R + R* 4+ Rj,,), finite potential
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* Modesto, Paula-Netto & Shapiro, 2015: R + RF; (O)R + R, F,(O) R

[with real poles; renormalizable models, polynomials F, , of the same order]
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Classical and quantum singularities I: Newtonian potential

* Is renormalizability related to the cancellation of the
Newtonian singularity?

* BLG, PLB 2017: general model of the type R + RF;(O)R + R, F,(0)R*Y
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Classical and quantum singularities I: Newtonian potential

* Is renormalizability related to the cancellation of the
Newtonian singularity?

» The Newtonian singularity can be cancelled even in non-
renormalizable models.

» To cancel the singularity it suffices to have at least one massive mode
in each sector.

» Hence, the simplest form (avoiding tachyons) is Stelle’s 4t" order
(renormalizable) gravity.

[BLG, Phys.Lett.B 766 (2017) arXiv:1609.05432]



Classical and quantum singularities 1l: Curvature

/

% Stelle’s 4™ order gravity has a finite Newtonian potential but still
has curvature singularities [Stelle, 1978; Li, Perkins, Pope & Stelle, 2015]

¢ Isotropic static spherically symmetric metric:
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¢ Linearised equations of motion + delta source
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> At least 4 derivatives: finite Newtonian potentials.

> At least 6 derivatives: regular Newtonian limit.
[BLG & Paula-Netto, arXiv: 1806.05664]
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» Divergences are softened when going from 2 to 4 and to
6+ derivatives:

» Non-renormalizable = renormalizable = super-renormalizable

» Singular potential and curvature = finite potential = finite
potential and regular curvature



Spherical collapse of small masses
[Frolov, Zelnikov & Paula-Netto, JHEP 2015; Frolov, PRL 2015]

* Gyraton: apply a boost to Newtonian limit solution and take
the Penrose limit (keeping relativistic mass constant).

* Dominant contribution comes from the spin-2 sector.
» Collapsing thin null shell: spherical superposition of gyraton:s.
* Collapsing thick null shell: spherical superposition of thin shells.

0. if [t > /2.

Density at the origin: p(t) = { L/ £ —r/2 <t /9
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Spherical collapse of small masses
[Frolov, Zelnikov & Paula-Netto, JHEP 2015; Frolov, PRL 2015]

* Gyraton: apply a boost to Newtonian limit solution and take

the Penrose limit (keeping relativistic mass constant).

* Dominant contribution comes from the spin-2 sector.

Collapsing tAin null shell: spherical superposition of gyratons.

* Collapsing thick null shell: spherical superposition of thin shells.

0. if [t > /2.

Density at the origin: p(t) = { L/ £ —r/2 <t /9
MiT, II —T/2<1<T/4,

Field depends on
. —\ i1
Fo(z) = —E4 (ﬁ) + ?Z A (\/_) Hj—_l{mi\/f).

For polynomial HDG:
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6th- and higher-order models:
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4th-order gravity:
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* |t is also possible to show that for a general polinomial higher-
derivative gravity there is a mass gap for the formation of mini
black holes. [Frolov, PRL 2015]

[BLG & Paula-Netto, arXiv: 1806.05664]



Other developments

* Phenomenological aspects of higher-derivatives
* Bending of light
Accioly, BLG & Shapiro, PRD 2017; BLG & Shapiro, PLB 2018;

» Torsion balance experiments of the inverse-square force
law: complex poles introduce oscillations in the potential

BLG, PLB 2017; Perivolaropoulos, PRD 2017; Boos, 2018.

 (Cravitational seesaw-like mechanism, to avoid the Planck
suppression

Accioly, BLG & Shapiro, £P/C 2017.



Summary & Perspectives

Theories with more than four derivatives in both spin-2 and spin-0
sectors have not only a finite Newtonian potential, but also a regular
non-relativistic limit.

Generalization of previous consideration [Frolov, PRL2015] on the
collapse of null shells, so as to account for the possibility of complex
and degenerate poles. Regular solution for theories with more than
four derivatives; mass gap.

This contrasts to Stelle’s fourth-order gravity [Stelle, GRG1978; Li, Perkins, Pope
& Stelle, PRL 2015, PRD 2015].

Theories with 6+ derivatives seem to share the same regularity properties

of the non-local ghost-free theories. [Frolov, PRL 2015; Buoninfante, Koshelev,
Lambiase, Marto & Mazumdar, JCAP 2018; Boos, Frolov & Zelnikov, PRD 2018; Frolov & Zelnikov,
PRD 2016; Edholm, Koshelev & Mazumdar, PRD 2016]

Motivation for the investigation of the full theory (non-linear regime), e.g.,

* Numerical search of spherically symmetric solutions in theories with 6,
8 and 10 derivatives only found regular solutions [Holdom, PRD 2002].

Applications to astrophysics and astroparticle physics.



