Reconstruction of large-scale CMB temperature anisotropies with primordial CMB induced Polarization in galaxy cluster

Guo Chin Liu
Physics Department
Tamkang University
IWARA 2018
@Ollantayambo

- Low quadrupole problem:
 - Smallness of the quadrupole moment: (p < 0.5% Planck Collaboration 2015)
- Alignment of low multipole moments:
 - Quadrupole and octopole planes are aligned with each other(pvalue < 1.5% Planck Collaboration, 2013 XII, Copi et al. 2015, Rassat et al. 2013)
- Hemisphere Power Asymmetry:
 - power is larger in one hemisphere than the other(p
 0.1% Eriksen et al. 2004; Planck Collaboration 2013 XXIII)
- Cold Spot:
 - unusual cold spot with radius
 around 10 degrees(p< 1% Vielya

- Low quadrupole problem:
 - Smallness of the quadrupole moment: (p < 0.5% Planck Collaboration 2015)
- Alignment of low multipole moments:
 - Quadrupole and octopole planes are aligned with each other(pvalue < 1.5% Planck Collaboration, 2013 XII, Copi et al. 2015, Rassat et al. 2013)
- Hemisphere Power Asymmetry:
 - power is larger in one hemisphere than the other(p
 0.1% Eriksen et al. 2004; Planck Collaboration 2013 XXIII)
- Cold Spot:
 - unusual cold spot with radius around 10 degrees(p< 1% Vielva

Copi et al. 2015

- Low quadrupole problem:
 - Smallness of the quadrupole moment: (p < 0.5% Planck Collaboration 2015)
- Alignment of low multipole moments:
 - Quadrupole and octopole planes are aligned with each other(pvalue < 1.5% Planck Collaboration, 2013 XII, Copi et al. 2015, Rassat et al. 2013)
- Hemisphere Power Asymmetry:
 - power is larger in one hemisphere than the other(p
 0.1% Eriksen et al. 2004; Planck Collaboration 2013 XXIII)
- Cold Spot:
 - unusual cold spot with radius
 around 10 degrees (p< 1% Vielya

Original evidence of power asymmetry by Eriksen et al. 2004

- Low quadrupole problem:
 - Smallness of the quadrupole moment: (p < 0.5% Planck Collaboration 2015)
- Alignment of low multipole moments:
 - Quadrupole and octopole planes are aligned with each other(pvalue < 1.5% Planck Collaboration, 2013 XII, Copi et al. 2015, Rassat et al. 2013)
- Hemisphere Power Asymmetry:
 - power is larger in one hemisphere than the other(p
 0.1% Eriksen et al. 2004; Planck Collaboration 2013 XXIII)
- Cold Spot:
 - unusual cold spot with radius
 around 10 degrees (p< 1% Vielya

Possible Sources of Anomalies

Cosmology

- Alternative inflation model violating scale invariance (e.g. Boyanovsky et al. 2006, Powell and Kinney 2007)
- Alternative inflation model violating isotropy (e.g. Gordon et al. 2005, Grishchuk & Zeldovich 1978, Turner 1991)
- Super void in the direction of cold spot (Marcos-Caballero et al. 2016; Naidoo et al. 2016)
- systematics or foreground contamination (e.g. Solar & Seljak 2004, Copi et al. 2006, Cipi et al. 2015, Mertsch &

Any independent measurement to study these anomalies?

Primordial CMB Polarization

- CMB polarization is generated through Thomson scattering recombination, reionization, hot gas cloud
- temperature anisotropies (quadrupole component) are sources of polarization
- homogeneous hot gas: primordial polarization perturbed hot gas: secondary polarization

Stokes parameters

$$Q = \frac{3S_T}{16\rho} \int I_{in}(q, f) \sin^2 q \cos 2f dW$$
$$-U = \frac{3S_T}{16\rho} \int I_{in}(q, f) \sin^2 q \sin 2f dW$$

z-axis as the propagating direction of scattered light

W. Hu

Anomalies with Polarization

Preferred Quadrupole and Octopole of Puncorr

- axis of evil(Frommert & Ensslin 2010):
 - separate the polarization into P_{corr} and P_{uncorr}
 - octopole of P_{uncorr} changes alignment
- cold spot(Vielva et al. 2011):
 - big uncertainty due to the bad sensitivity for polarization.

Frommert & Ensslin 2010

CMB Induced Polarization in Galaxy Cluster

- Primordial CMB induced polarization
 - CMB quadrupole from LSS seen by cluster (Zeldovich & Sunyaev 1980)
 - polarization degree P~Q_{cmb}τ, τ=∫n_eσ_Tdl
- Primordial CMB quadrupole has long coherence length
 - strong correlation between remote quadrupole and local CMB (Hall & Challinor 2014)

Hall & Challinor 2014

Simulated Sky Maps

- polarization vectors align uniformly
- polarization degree follows the local distribution of gas

Other Sources of secondary CMB polarization

- ionized gas cloud moves w.r.t the rest frame of CMB. The quadrupole results from the relativistic Doppler effect. (Zeldovich & Sunyaev 1980)

- polarization signal $P \sim \beta_t^2 T$
- polarization direction is perpendicular to the transverse velocity of ionized gas
- Separable by multi-freq. obs.
- double scattering
 - due to non-symmetrical optical depth (Sunyaev & Zeldovich 1980)
 - CMB acquires an anisotropy due to thermal and kinematic SZ effect.

(Sazonov & Sunvaev 1999 Lavaux et al. 2004

- polarization degree P∝TeT² (thermal) and βtT² (kinematic)

Ramos, da Silva, Liu 2013

Initial Perturbations

Spherical harmonics coefficients of CMB

$$a_{X,lm} = (-i)^l 4\pi \int d^3 \mathbf{k} Y_{lm}^* (\hat{\mathbf{k}}) \Delta_{Xl}(\mathbf{k}, \eta_0)$$
x: T. E

Induced Polarization in distant cluster

direction of cluster

$$(Q_T + iU_T)(\hat{\mathbf{n}}) = \frac{2\sqrt{6}\pi}{5} \tau \int d^3 \mathbf{k} e^{i\mathbf{k}\cdot\mathbf{x}} \Delta_{T2}(\mathbf{k}, \eta) \sum_m Y_{2m}^* (\hat{\mathbf{k}})_{\mp 2} Y_{2m} (\hat{\mathbf{n}})$$

time evolution of transfer function is indep. on direction of wave -mode

$$D_{Tl}(\mathbf{k},h) = y(\mathbf{k})D_{Tl}(k,h)$$
 primordial gravitation potential:

primordial gravitation potential:
origin of CMB and induced polarization

Statistics of initial perturbations

$$\langle y(\mathbf{k}_1)y(\mathbf{k}_2)\rangle = P_y(k)\mathcal{O}(\mathbf{k}_1 + \mathbf{k}_2) = Ak^{n-4}\mathcal{O}(\mathbf{k}_1 + \mathbf{k}_2)$$

Estimate the Primordial Potential

Bayes' Theorem

$$P(y | \mathbf{d}) \mu P(\mathbf{d} | y) P(y)$$

likelihood prior $P(y) = e^{-\frac{1(y(\mathbf{k}))^2}{2 P_y(k)}}$

minimizing the function

$$f = \sum_{j=1}^{n_c} \frac{\left(\widehat{Q}_{T,j} - Q_{T,j}\right)^2}{2\sigma_{Q_T}^2} + \sum_{j=1}^{n_c} \frac{\left(\widehat{U}_{T,j} - U_{T,j}\right)^2}{2\sigma_{U_T}^2} + \sum_{k=1}^{n_k} \frac{\psi_k^2}{2P_{\psi}}$$

assume very nice observation

$$\sigma_{0.} = \sigma_{0.} = 10^{-9} \, \text{K}$$

assume the optical depth is well measured by other observations

Algorithm

Simulate primordial potential y(k)

CMB maps

6000 polarization in galaxy cluster

add noise

fitting w with selected polarization data

comparison

reconstruct local CMB maps

Reconstructed Temperature

Temperature Map by simulated perturbations

- n_r=5
- n_k=240
- lmax=16

Reconstructed Map using remote quadrupole

- n_r=3
- n_k=60
- n_c=100
- lmax=10

Reconstructed Quadrupole/Octopole

Simulated Temperature Maps

Reconstructed Temperature Maps

Reconstruction of CMB Polarization

Polarization Map by simulated perturbations

- Imax=16
- n_r=5
- n_k=240

Polarization Map using remote quadrupole

- lmax=10
- n_r=3
- n_k=60
- n_c=100

Reconstruction with more information from CMB Polarization

Simulated Temperature Maps

Reconstructed Temperature Maps

Forecase

$$r_{l} = \frac{\sum_{m} a_{T,lm} \hat{a}_{T,lm}}{(2l+1)\sqrt{C_{l} \hat{C}_{l}}}$$

0<z<1

$$E_{l} = \frac{\sum_{m} \left(\hat{a}_{T,lm} - a_{T,lm}\right)^{2}}{(2l+1)C_{l}}$$

nc=300

Conclusion

- induced polarization in distant galaxy clusters can be the independent measurement to study the low quadrupole rand alignment anomalies
- we may not need to scan large area of sky, just focus on galaxy clusters with low contamination