# Unification of Strongly Magnetized Neutron Stars with regard to X-ray emission from hot spots

#### YONEYAMA Tomokage<sup>\*</sup> HAYASHIDA Kiyoshi<sup>\*</sup> NAKAJIMA Hiroshi<sup>\*\*</sup> MATSUMOTO Hironori<sup>\*</sup>

\*Osaka Univ. \*\*Kanto-Gakuin Univ.



IWARA2018@Ollantaytambo, Peru 11 Sep., 2018, 09:00 PET

# X-ray Isolated Neutron Star (XINS)

- Radio-quiet, thermally emitting neutron stars
- Nearby objects (< 500 pc)
- Show only single temperature blackbody emission
  ⇒ Key objects for *M-R* relation; "*Perfect NS*"
- $L_x \sim 10^{30} 10^{32} \text{ erg s}^{-1}$
- T ~ 10<sup>6</sup> K: observed in soft X-ray band
- B ~ 10<sup>13</sup> G: strongly magnetized
- Only 7 objects are known; "The Magnificent Seven" or "Seven Samurai"

| RX <b>J0420</b> .0-5022 (k | kT = <b>43</b> eV)    | RX <b>J1605</b> .3+32             | 49 ( <b>105</b> eV) |
|----------------------------|-----------------------|-----------------------------------|---------------------|
| RX <b>J0720</b> .4-3125    | ( <b>102</b> eV)      | <u>RX <mark>J1856</mark>.5-37</u> | 5 <u>4</u> (63 eV)  |
| RX <b>J0806</b> .4-4123    | ( <mark>90</mark> eV) | <b>RBS1774</b>                    | ( <b>105</b> eV)    |
| RBS1223                    | ( <mark>88</mark> eV) |                                   |                     |

### Discovery of the "keV-excess" in J1856



## Discovery of the "keV-excess" in J1856



#### Search for the other 6 XINSs

fitting with known single BB model ⇒ All the 6 sources show the keV-excess

evaluation value : f<sub>ex</sub> = (data - model)/model



## Spectral fitting including the keV-excess

| J1605                                   | Target         | kT <sub>c</sub><br>[eV] | kT <sub>h</sub><br>[eV] | χ² <sub>r</sub> /dof |
|-----------------------------------------|----------------|-------------------------|-------------------------|----------------------|
| kT = 120 eV                             | J0420          | 46.5                    | 160                     | 1.2 / 85             |
| $U_{2} = 10^{-4}$                       | J0720          | 82.4                    | 127                     | 1.3 / 354            |
|                                         | J0806          | 57.5                    | 105                     | 1.0 / 194            |
| $kT_c = 64.7 \text{ eV}$                | <b>RBS1223</b> | 68.7                    | 138                     | 1.1/229              |
|                                         | J1605          | 64.7                    | 120                     | 1.0 / 282            |
|                                         | J1856          | 62.0                    | 101                     | 1.2 / 206            |
|                                         | <b>RBS1774</b> | 54.5                    | 106                     | 1.1/218              |
| 0.2 0.5 1 2<br>Energy (keV)             | Target         | kT<br>[eV]              | Г                       | $\chi^2_r$ / dof     |
| Lifergy (Kev)                           | J0420          | 46.1                    | 3.7                     | 1.2 / 85             |
| dual BB_reproduces all the 7 XINSs      | <b>J0806</b>   | 93.0                    | 6.6                     | 1.0 / 194            |
| BB+powerlaw is acceptable for 3 sources | J1856          | 62.0                    | 7.1                     | 1.2 / 206            |

 $\Rightarrow$  Focus on the **dual BB** model





#### 



## Link between XINS & Magnetar

• Magnetars are hotter (~ 1 keV), younger and stronger B than XINS



## Link between XINS & Magnetar

- Magnetars are hotter (~ 1 keV), younger and stronger B than XINS
  ⇒ XINS may be old, "worn-out" Magnetar
- However, NO strong evidence has been reported!







## Cool component vs. Hot component



## Cool component vs. Hot component



## Cool component vs. Hot component



similar ratio

suggests the same origin supports "Worn-out" hypothesis



XINSs show  $L_h < L_c \Rightarrow$  Thermal evolution? (work in progress)<sub>17</sub>

## <u>Summary</u>

- XINSs have been considered to show single temperature blackbody emission
- We discovered the keV-excess in all the 7 XINSs
- **Dual BB model** reproduces the X-ray spectra
- XINSs are no longer "Perfect NS"
- Spectral shape are similar with Magnetars
  - $\Rightarrow$  suggesting the same origin

#### supporting the "worn out" hypothesis

- Evolution from magnetar to XINS will be fast, or there will be missing object between them
- Luminosity ratio of the dual components may be a hint for thermal evolution

## back up

## Physical view

Normal view:

