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X-ray Jets

Relativistic beams of particles and magnetic field
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Jets are important

X-ray Jets with Protons, 6=
100 .

-1
1

[104serg s

Luminosity

. The energy carried by jets is an important part of the = . -
energy budget of the black hole.
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. Jets can carry super Eddington energy flux. May be
relevant to the rapid growth of SMBH in the early
universe by allowing super Eddington accretion.
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Sadowski et al. 2014

. The enthalpy flux carried by jets prevents catastrophic collapse of
clusters of galaxies, and is part of a feedback loop correlating

SMBH with galaxy bulge masses.

Fabian et al. 2000

Inverse Compton jets will maintain near constant surface
brightness at very large redshifts. May serve as “beacons”
in the early universe.

Simionescu et al. 2016



Hypothesize they are radiated by the same electron population
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X-ray and radio jet morphology match
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X-rays are more luminous than radio for much of jet
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Inverse Compton scattering of the cosmic microwave background

Extension of the spectrum of radio sychrotron electrons to lower energy produces
|C X-rays by scattering off the CMB.
For Relativistic jets, we must transform using the Doppler factor:
6=1/(I'(1-B cosB))
Assume minimum energy:  d{B%/(8m)+U}/dB =0
Projection and Light travel time: Volume =V _,//(d sinB)
CMB energy density is enhanced by 2 in jet rest frame

Felten-Morrison ('66) IC formulas give

ileyps = QATY(I*-1/4)/3 & Wo(lasz)* T°

Cannot solve for all three quantities I, o, and 8
1. Assume [ =0 (maximum [ is 20)
OR 2. Parameterize as a function of 6

[ = O often falls in a mid-range of reasonable 6



IC/CMB at high redshift

Energy Balance; B vs. CMB Lifetime of X-ray emitting electrons
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CMB energy density increases as (1+z).

This compensates the cosmological diminution of surface
brightness by (1+z)4.

Thus X-ray jets will become more prominent at large redshifts



X-ray Survey of High Redshift Radio Jets

Simionescu+2016ApJ...816L..15S

B3 0727+409
Z=2.500

Parent Population: Complete survey, S, ;. 5cn, > 70mdy
123 Quasars with spectroscopic redshift in joint FIRST/SDSS region
(Gobeille 2011; Gobeille, Wardle & Cheung 2014)

Cycle 19 Survey: 14 sources at z>3., with one-sided radio structure
(jet or knot or lobe).

Ten quasars observed to date. Two have extended X-ray structure without
underlying radio emission.



J1610+1811 |Z=3.118

0.5 -7 ke, 6.2 GHz
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2 mas VLBI
8.4 GHz
Bourda+ 2011

Quasar: 5.2x10 3 erg cm=—2 s~ Core: 64.8 mJy
L, = 3.2x10% erg s
Jet: <1mJdy
Jet 9L-2X1§‘315 195940”"2 s Lobe: 8.2 mly
= 8.3x erg s- :
iC/CMB model of jet: ’ Lobe Model: 1%25 1“023 gfgss
[=0=94 t, = 96,000 yrs
B=12.3 yGauss t; = 250,000 yrs.

Power=1.4 x 10%¢ erg s
T,. = 8500 yrs (radio electrons)




J1405+0415 Z=3.209

0.5 -7 keV - 6.2 GHz
o
O
1
Quasar: 3.3x10"%erg cm=—2 s~ Core: 687 mJy
L, =3.1x10%erg s Yang+ 2008 758 mJy
Jet: 8.6x10""%erg cm—2 s Jet: 27.7 mdy
L, =8.2x10* erg s’ a=0.91 £ 0.09
_ _ Lobe: 2.9 mJy
iIC/CMB model: a=1.66 + 0.40
[ =0=4 model:

B=156 uGauss

Power=35 x 106 erg s




X-ray Survey of Lower Redshift Radio Jets (z= ~0.3 — 2.)

1. Selection of flat spectrum radio sources from
1. VLA, S;>1jy
2. ATCA, S,,>0.34 Jy

2. Radio jet longer than 27

3. Detect 31 of 52.



Lower Z Survey
Charge neutrality via Protons (orange) or Positrons (blue), ' =0
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Black holes with spin a>0.2 can power quasar jets for up to 107 yr
(alternate mass estimates, from Xiong+2014 and refs., Shen+2011 )

Spin Powered Jets

Available Energy [M)]

109 ///
: X /X
x/ 1 X X :

T |

1x108  5x1081x10° 5x10% x -

Black Hole Mass Estimate [M;)]



Tchekhovskoy, 2015, Krakow conf. relativistic jets

Gravity limits [ty
Pj and P! ;

Assume a helical magnetic field extracts the rotational

Gabuzda, 2015, Krakow conf. relativistic jets

magnetic flux: Winding up of field / |

b ~ Brg lines due to |
differential rotation -
grav. radius: @
ro = GM/c? 1] —
NV T o F = .

energy, winds tightly around the jet spin axis
Angle ¢ between plane of (E,H) and plane orthogonal to spin axis

Poynting flux dE/(dtdA) =S=c (E x H) /4t
<power>, =S, 11 r’ = ¢ H? (r?/4) sin()
Momentum flux p=S/c
Angular momentum flux dL/(dtdA) =r x p
<dL/dt>,= H? (r3/4) cos(¢)
ANd <L_>=U/0) wasson, 1562 provems 12



7 Locs Zamaninasab + Nature,2014, 510, p126.
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Summary

. We use Chandra X-ray observations to estimate the power of jets, by observing

the jet itself. We tie this to the central black hole mass on an individual object
basis.

. The rotational energy of supermassive black holes can power these quasar jets,
even with spin parameters as low as a=0.2 for lifetimes longer than millions of
years.

. If the power we observe originates as a pure Poynting flux, we derive initial
magnetic field strengths of order 10’s of kiloGauss.

Conserving the energy loss and angular momentum loss of the black hole gives a
relation between magnetic field strength and jet radius. For models of
Magnetically Arrested Disks (e,g., Narayan+ 2003, Sadowski+2014,
Tchekhovskoy+ 2011, Zamaninasab+ 2014) the inferred magnetic flux is of order
of magnitude of predictions, for Eddington limited accretion.

. Isolated X-ray jets at Z > 2 are a population. Presently, X-ray jet information
biased by selecting them based on radio emission. The future Lynx observatory
has the sensitivity and field of view to select via X-ray surveys!
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[ = O (triangles) gives reasonable results for enthalpy flux
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Minimum energy formulation:
d{B?%/(8m)+U, }/dB = 0

B= fea [(a+1)G(a) (1+k) Ly v*(¥max'™* - ¥min'2%) /(¢ 4/37 L r t)]

Measured
Constrained assumption

Assumed f. =1, k=1, ¢=1, t=r

1/ (a+3)

Lynx*, the next generation X-ray Observatory (2m?, 0.5 arcsec)
offers measurements of:

r via improved statistics on cross-jet profile

Ymin VIa measurement of soft X-ray turn-over
via Fermi or ALMA data

Vmax

*www.lynxobservatory.com




Correlation of derived properties with the Black Hole Mass

X-ray Jets, o=l
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|C/CMB interpretation

Extension of the radio sychrotron electrons to lower energy produces IC X-rays by

scattering off the CMB.
Projection and Light travel time: Volume =V_, /(0 sinB)
CMB energy density is enhanced by 2 in jet rest frame

Felten-Morrison ('66) IC formulas give combination of o & '
ilengs = BATY(I*-1/4)/3 & Gy (lesz)* T*

Cannot solve for all three quantities I, o, and 6
1.Use ' =0
OR 2. Parameterize as a function of 6

PKS 0637-752 iC/CMB model predictions

contradicted by FERMI upper limit
observations.
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Black holes with spin a>0.2 can power quasar jets for up to 107 yr
(fundamental plane mass estimates, using Gulitekin+2009,706,404)

Spin Powered Jets
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Magnetic field strength in the rest frame
of the jet vs. redshift. For a given bulk
Lorentz factor I, inverse Compton
scattering of the microwave background
will dominate the radiation unless the
field is above the corresponding curve
for I. For redshifts above 3, (vertical
black line) this implies 100’s of pG for
even mildly relativistic jets.
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Lifetime of electrons with y=1000
against losing half their energy by
scattering of the CMB. Electrons
producing 1 keV X-rays by inverse
Compton have energies roughly y/T,
while GHz producing electrons are
~100 times more energetic, with
0.01 shorter lifetimes.
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Magnetic field strength in the rest frame
of the jet vs. redshift. For a given bulk
Lorentz factor I, inverse Compton
scattering of the microwave background
will dominate the radiation unless the
field is above the corresponding curve
for I'. For redshifts above 3, (vertical
black line) this implies 100’s of pG for
even mildly relativistic jets.
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Lifetime of electrons with y=1000
against losing half their energy by
scattering of the CMB. Electrons
producing 1 keV X-rays by inverse
Compton have energies roughly y/
[, while GHz producing electrons
are ~100 times more energetic,
with 0.01 shorter lifetimes.
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