

Lethal radiation from nearby supernovae helps explain the small cosmological constant

戸谷友則 (TOTANI, Tomonori)

Dept. Astronomy, Univ. Tokyo

with H. Omiya, T. Sudoh, M.A.R. Kobayashi, M. Nagashima

arXiv:1804.10395, to appear in Astrobiology

2018 Sep. 8-15

IWARA2018 (8th International Workshop on Astronomy and Relativistic Astrophysics)
Ollantaytambo, Peru

アジャイル開発 loT 激変するビジネス環境での ニュートノネン プロトタイプ デジタルトランスフォーメーションとは? グローバル通信

KDD お客さまの挑戦に be CONNECTED

Log in | My account | Contact us

Become a member

 $a \equiv$

Renew my subscription Sign up for newsletters

News

A web news of the journal Science

Latest News

Tourism is eight times worse for the planet than previously believed

BY SID PERKINS | MAY. 7, 2018

Postdoc hopes Pennsylvania voters will help her re-engineer how to run for Congress

Science Magazine

VOL 360, ISSUE 6388 4 MAY 2018

Table of Contents Past Issues Subscribe

Got a tip?

How to contact the news team

お客さまの挑戦に、全力で。be CONNECTED.

企業のIOT推進に必要な

つの視点

課題の洗い出し

まずは小さく、簡単に

…そして、

3 つ目の視点とは? >

the concordance ACDM cosmology

Thoeretical Problem of Cosmological Constant

the smallness

- Λ is vacuum energy density $\rho_{vac} \sim (energy)^4$ in the natural units from the viewpoint of quantum field theory
- observed $\rho_{\Lambda} \sim \rho_{\text{matter}} \sim (\text{meV})^4$ in the present time we exist
- $\rho_{vac} \sim (Planck scale = 10^{19} \text{ GeV})^4 \sim 10^{120} \rho_{matter}$
- $\rho_{vac} \sim (electroweak \ scale = 100 \ GeV)^4 \sim 10^{50} \ \rho_{matter}$

• the coincidence

- There may be some mechanisms to cancel Λ , but its observed value is not exactly zero!
- furthermore, somehow $\rho_{\Lambda} \sim \rho_{\text{matter}}$ just in our present time
- no known first-principle-based explanation about this

Proposed models/explanations

- Proposed solutions?
 - the cosmological constant Λ
 - dark energy, a generalized form of vacuum energy
 - e.g. a potential energy of a particle field (like inflation)
 - not necessarily constant, but variable in time
 - modified theory of gravity
- no persuasive solution based on the first principle
 - energy scale too low
 - difficult to explain coincidence
- anthropic argument?

the anthropic argument for Λ

- Λ may be stochastically determined when the universe is born
 - theoretically possible, e.g. multiverse motivated by string theory
 - other fundamental constants may also change, but let's think that Λ is the only variable for simplicity
- galaxies do not form when $\Lambda >> \Lambda_{obs}$, so no observer
 - Barrow and Tipler 1986; Weinberg 1987; Efstathiou 1995; Martel et al. 1998; Garriga et al. 2000; Peacock 2007; ...
- universe will collapse within 10 Gyr when $\Lambda < -\Lambda_{\rm obs}$, so no observer
- so $|\Lambda| < \Lambda_{\rm obs}$ is expected.
 - perhaps the only one explanation of the smallness & coincidence problem without fine tuning

Probability Distribution of Λ ?

- a natural prior probability distribution of Λ : "flat" about Λ
 - $dP_{pri}/d\Lambda = const.$ around $\Lambda=0$
 - because physically natural scale of $\Lambda >>>>> \Lambda_{obs}$
 - assumed in most previous studies
 - coincidence problem solved: $\Lambda << \Lambda_{obs}$ is statistically disfavored because $P(<\Lambda)$ $\propto (\Lambda/\Lambda_{obs})$

- $dP_{pri}/d(ln\Lambda)$ = const. may also be possible, if Λ is positive bound, but we need to introduce a very low energy cut off at $\Lambda << \Lambda_{obs}$
- observable distribution $dP_{obs}/d\Lambda \propto n(\Lambda) \times dP_{pri}/d\Lambda$
 - $n(\Lambda)$: number of observers appearing in the universe
 - · observable distribution can be calculated by astrophysics!

A distribution from galaxy formation theory

- Sudoh, TT+17
 - using a semi-analytic model of galaxy formation
 - ACDM structure formation theory
 - gas cooling, star formation, supernova feedback, galaxy mergers
 - reproduce a variety of observations (e.g. galaxy luminosity functions)
 - assuming $n(\Lambda) \propto \text{stellar mass}$ produced up to 15 Gyr, we found $P(\Lambda < \Lambda_{\text{obs}}) = 6.7\%$, with the distribution peak at $\Lambda / \Lambda_{\text{obs}} \sim 20$
- Barnes+'18
 - using the EAGLE numerical simulation of galaxy formation, they found $P(\Lambda < \Lambda_{obs}) = 2\%$ and peak at $\Lambda / \Lambda_{obs} \sim 60$

- If we assume that all stars produce an observer equally, the probability of finding the small Λ as observed is small: $P(\Lambda < \Lambda_{obs}) \sim 2\%$
- What options do we have?
 - Forget the anthropic argument. Search other explanations for Λ .
 - Well, it is not surprising even if an event of 2% probability happened to us.
 - There are many effects affecting the number of observers (habitability) in the universe. Perhaps we may have missed some effects to change the Λ distribution?
 - Piran+'16 considered extinction of an observer by a GRB in nearby dwarf galaxies, which disfavors high galaxy number density \rightarrow disfavoring low $\Lambda < \Lambda_{\rm obs}$. Not useful to solve small $P(\Lambda < \Lambda_{\rm obs})$, but useful to explain non-zero Λ if $dP_{\rm pri}/d(\ln \Lambda) = {\rm const.}$
 - Here we consider extinction by a nearby supernova within a galaxy, disfavoring high stellar density \rightarrow disfavoring large $\Lambda > \Lambda_{\rm obs}$

• If we assume that all stars produce an observer equally, the probability of finding the

• If we assume that all stars produce an observer equally, the probability of finding the

to us.

ty) in the distribution?

by dwarf ing low Λ < n-zero Λ if

xy,

- If we assume that all stars produce an observer equally, the probability of finding the small Λ as observed is small: $P(\Lambda < \Lambda_{obs}) \sim 2\%$
- What options do we have?
 - Forget the anthropic argument. Search other explanations for Λ .
 - Well, it is not surprising even if an event of 2% probability happened to us.
 - There are many effects affecting the number of observers (habitability) in the universe. Perhaps we may have missed some effects to change the Λ distribution?
 - Piran+'16 considered extinction of an observer by a GRB in nearby dwarf galaxies, which disfavors high galaxy number density \rightarrow disfavoring low $\Lambda < \Lambda_{\rm obs}$. Not useful to solve small $P(\Lambda < \Lambda_{\rm obs})$, but useful to explain non-zero Λ if $dP_{\rm pri}/d(\ln \Lambda) = {\rm const.}$
 - Here we consider extinction by a nearby supernova within a galaxy, disfavoring high stellar density \rightarrow disfavoring large $\Lambda > \Lambda_{\rm obs}$

the Galactic habitable zone

habitability depends on:

Gonzalez+'01; Lineweaver+'04; ...

- amount of stars
- sufficient age for evolution of life
- sufficient metal abundance for rocky planet formation
- no hazardous supernovae / gamma-ray bursts

•

effect on life by a nearby supernova

Ruderman 74; Whitten+'76; Reid+'78; Gehrels+'03; ...

- a supernova within ~10 pc would have a significant impact on the ozone layer of Earth
 - gamma-ray/cosmic-ray radiation produces free N atoms, subsequently producing nitrogen oxides (NOx) in the atmosphere
 - nitrogen oxides catalytically destroy ozones

$$\begin{aligned} NO + O_3 &\rightarrow NO_2 + O_2 \\ NO_2 + O &\rightarrow NO + O_2 \end{aligned}$$
 net : $O_3 + O \rightarrow O_2 + O_2$.

- · terrestrial life could be significantly damaged
- the number of SNe within 10 pc from the Sun?
 - about one in 0.5 Gyr (time after the complex terrestrial life emerged on Earth)
 - a coincidence! we are living on the edge of habitable region about stellar density, implying that the supernova effect is actually working?

Stellar density in galaxy formation

- virial radius of dark halos is a good indicator of stellar disk radius of galaxies
 - $R_{disk} \sim \lambda R_{vir}$
 - halo spin parameter is roughly universal: λ~0.05
 - $\lambda = JE^{1/2}/GM^{5/2} \sim J/(MR_{vir}V_{rot})$
 - so roughly we expect $\rho_{star} \propto \rho_{vir}$ (virial density of dark halo)

Mao+'98

halo density in structure formation

- the spherical collapse model predicts:
 - \bullet p_{vir} does not depend on M_{halo}
 - ρ_{vir} decreases with time when Λ effect is not significant
 - stars formed earlier should be located in higher density regions
 - after Λ becomes dominant,
 - ρ_{vir} becomes constant
 - halo formation rate rapidly drops by accelerated cosmic expansion

• If $\Lambda/\Lambda_{\rm obs}$ = 50, internal density of any halo is more than 10 times larger than the halo forming at ~10 Gyr in our universe.

Totani+'18

galaxy formation simulation in high Λ universe

the Sun in cosmic star formation history

- the Sun formed 4.6 Gyr ago (z=0.44)
- 90% of all stars formed by now are older than the Sun
 - they are in higher density regions
 - they have more time for evolution of life
- We are living in the low tail end of stellar density distribution
 - implying that an observer avoids high stellar density regions?

probability distribution of Λ with the nearby SN effect

- using the semi-analytic galaxy formation model of Sudoh+'17
- N_{exp}: the expected number of lethal supernova around a star during the time of evolution of life to an observer
 - assuming $N_{exp} \propto \rho_{star} \propto \rho_{vir}$
 - core-collapse SNe occur only in young stellar populations, but type Ia occurs also in old populations
 - life survival probability: exp(-N_{exp})
- controlling model parameter: $N_{exp, \bullet}$ (N_{exp} for the Sun)
- with $N_{\exp, \odot} = 1$ or 3,
 - distribution peaks at $\Lambda/\Lambda_{obs} \sim 4$ or 2
 - $P(\Lambda < \Lambda_{obs})$ increases to 19% and 41%

Totani+'18

Conclusions and Discussions

- extinction of an observer by a nearby supernova has an effect to make the expected Λ value smaller, which may be important for the anthropic argument
- similar effects by other phenomena than SNe to disfavor high stellar density?
 - comet bombardment by a field star passage?
 - wide binary system affected by the Galactic potential?
 - gamma-ray bursts?
 - much brighter but less frequent than SNe, critical distance comparable to a galaxy size
 - long GRBs only in young stellar populations, short GRBs much less energetic
 - our scenario requires lethal events in old stellar populations as well
 - low metallicity preference of long GRBs → not important in high density regions?
- Prediction?
 - Stellar density around Sun is close to the critical value, beyond which terrestrial life do not exist
 - Future exoplanet studies would find less probability of biomarker detection in regions of higher stellar density than the solar neighborhood