Born-Infeld Magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

Jonas P. Pereira* Collabor.: Jaziel Coelho (UTFPR) and Rafael Lima (UDESC)

EPJC 78, 361 (2018), arXiv:1804.10182

*University of Southampton, Southampton, UK Federal University of ABC, Santo André, Brazil Supported by FAPESP research grants No. 2015/04174-9 and 2017/21384-2

Ollantaytambo, 13 Sept. 2018

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

2 Motivations

- 3 Nonlinear electromagnetism
- 4 Toroidal fields
- 5 Born-Infeld toroidal fields
- 6 Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

- Motivations
- Nonlinear electrodynamics in ideal magnetohydrodynamics
- Born-Infeld toroidal case
- Estimates and implications
- Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Ollantaytambo, 13 Sept. 2018 3 / 17

1) Outline

2 Motivations

- Nonlinear electromagnetism
- Toroidal fields
- 5 Born-Infeld toroidal fields
- 6 Some consequences

Conclusions

Nonlinear theories in the vicinities of stars

- Currently, the activity of Soft Gamma Repeaters (SGR) and Anomalous X-ray Pulsars (AXP) is mainly understood with the presence of very large surface magnetic fields (10¹⁴ – 10¹⁵ G) [Kaspi and Beloborodov (2017)].
- Thus, nonlinear electrodynamics might influence some magnetar observables.
- Born-Infeld (BI) theory is a low energy limit of string theory and laboratory constraints of its scale field fail for values around 10¹⁵ - 10²³ G [Carley and Kiessling (2006), Ellis et al. (2017)].
- So, opportunity arises to probe BI theory with magnetars! Could nonlinearities of electrodynamics also leave a trace in the gravitational waves coming from these stars?

Outline

2 Motivations

3 Nonlinear electromagnetism

Toroidal fields

- 5 Born-Infeld toroidal fields
- 6 Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

Nonlinear electrodynamics within ideal MHD

• In the context of ideal magnetohydrodynamics,

$$\vec{E} = -\frac{\vec{v}}{c} \times \vec{B} = -\frac{\vec{\omega} \times \vec{r}}{c} \times \vec{B}.$$
 (1)

For crossed fields

$$\nabla \cdot (L_F \vec{E}) = 4\pi\rho, \tag{2}$$

$$\nabla \cdot \vec{B} = 0, \tag{3}$$

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \tag{4}$$

$$\nabla \times (L_F \vec{B}) = \frac{1}{c} \frac{\partial L_F \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{j},$$
(5)

with $L_F \doteq \partial L/\partial F$, $F \doteq F_{\mu\nu}F^{\mu\nu}$, *L*: nonlinear Lagrangian of electrodynamics, ρ : charge density and \vec{j} : current vector

Nonlinear electrodynamics within ideal MHD-II

• If one takes as reference Maxwell's electromagnetism (L = F),

$$L_F \vec{E} = \vec{E}_{Ma} + \nabla \times \vec{C},\tag{6}$$

$$L_F \vec{B} = \vec{B}_{Ma} + \nabla f, \tag{7}$$

where \vec{C} is an arbitrary vector, likewise to f.

Consistency with MHD demands that

$$\nabla \times \vec{C} = -\frac{\vec{\omega} \times \vec{r}}{c} \times \nabla f.$$
(8)

 When the hypothesis of very conductive media is taken into account (|*E*| ≪ |*B*|) (ρ: energy density),

$$\rho \approx \frac{L}{16\pi}.$$

8/17

Outline

2 Motivations

Nonlinear electromagnetism

Toroidal fields

- Born-Infeld toroidal fields
- 6 Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

Magnetars dominated by toroidal fields

- Low-poloidal magnetic fields in magnetars also support this view [Rea et al. (2010), (2012), (2014)].
- Within the modified twisted magnetic field, ratios of the toroidal energy to the total magnetic energy in stars could be up to 90 % [Ciolfi and Rezzolla (2013)].
- Assuming $\vec{B} \equiv \vec{B}_t = B_{\phi}(r, \theta)\hat{\phi}$, where $\hat{\phi}$ is the azimuthal unit vector ($\nabla \cdot \vec{B}_t = 0$), and defining the *z*-axis such that $\vec{\omega} = \omega \hat{z}$ ($\vec{v} = v\hat{\phi}$), $\vec{E} = \vec{0} \rightarrow \nabla \times \vec{C} = \vec{0} \rightarrow \nabla f = \vec{0}$, (10)

and then

$$L_F B_\phi = B_\phi^{Ma}.\tag{11}$$

• It suffices solving an algebraic equation to find B_{ϕ} in terms of B_{ϕ}^{Ma} .

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Outline

2 Motivations

Nonlinear electromagnetism

4 Toroidal fields

- 5 Born-Infeld toroidal fields
 - Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Ollantaytambo, 13 Sept. 2018 11 / 17

Born-Infeld Lagrangian and toroidal fields

Born-Infeld Lagrangian for crossed fields is [Born and Infeld (1934)]

$$L_{B.I} \doteq 4b^2 \left(\sqrt{1 + \frac{F}{2b^2}} - 1 \right),$$
 (12)

where *b*: scale field of the theory and $F = 2(\vec{B}^2 - \vec{E}^2)$. • For toroidal fields,

$$B_{\phi}^{BI} = \frac{b B_{\phi}^{Ma}}{\sqrt{b^2 - (B_{\phi}^{Ma})^2}}.$$
 (13)

- Thus, the nonlinear field B_{ϕ} is always larger than B_{ϕ}^{Ma} !
- Likewise to their energy density ratio,

$$\frac{\rho_{BI}}{\rho_{Ma}} = 2\left(\frac{b}{B_{\phi}^{Ma}}\right)^2 \left\{ \left[1 - \left(\frac{B_{\phi}^{Ma}}{b}\right)^2\right]^{-\frac{1}{2}} - 1 \right\} > 1.$$
 (14)

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Outline

2 Motivations

- 3 Nonlinear electromagnetism
- 4 Toroidal fields
- 5 Born-Infeld toroidal fields

Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Ollantaytambo, 13 Sept. 2018 13 / 17

Larger magnetic ellipticities

• For $\epsilon = c_1 \langle B_{\phi}^2 \rangle$ [Ostriker and Gunn (1969)], c_1 a constant,

$$\frac{\epsilon_{BI}}{\epsilon_{Ma}} = \left(\frac{\dot{E}_{GW}^{BI}}{\dot{E}_{GW}^{Ma}}\right)^{\frac{1}{2}} \approx \left(\frac{\Delta E_{GW}^{BI}}{\Delta E_{GW}^{Ma}}\right)^{\frac{1}{2}} \approx \left[1 - \left(\frac{B_{\phi}^{Ma}}{b}\right)^{2}\right]^{-1}, \quad (15)$$

• The upper-limit to the ellipticity, $|\epsilon_{ul}|$, could be constrained if a minimum value for b, b_{min} , was given, since

$$|\epsilon_{ul}| = \left[1 - \left(\frac{B_{\phi}^{Ma}}{b_{min}}\right)^2\right]^{-1} |\epsilon_{Ma}|.$$
(16)

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Ollantaytambo, 13 Sept. 2018 14 / 17

Energetics and upper limits

• An estimate to c_1 and B_{ϕ}^{Ma} would be (E_{fl} : flare energy)

$$|c_1| \approx \frac{R^4}{GM^2}, \ (B_{\phi}^{Ma})^2 = \frac{6E_{fl}}{R^3}.$$
 (17)

- From H constraints [Carley and Kiessling (2006)], $b_{min} \approx 4 \times 10^{15}$ G, while from fiducial stellar parameters and flares with $E_{fl} = 10^{47}$ erg (SGR 1806–20), $|\epsilon_{Ma}| = 1,20 \times 10^{-6}$. Thus, $|\epsilon_{ul}| \approx 1,24 \times 10^{-6}$ and $1 < \Delta E_{GW}^{BI} / \Delta E_{GW}^{Ma} \lesssim 1,08$.
- $E_{fl} = 10^{47} 10^{48}$ erg, say $E_{fl} = 5 \times 10^{47}$ erg, $|\epsilon_{ul}| \approx 7.4 \times 10^{-6}$ $[B_{\phi}^{Ma} = 1.7 \times 10^{15}$ G] and $1 < \Delta E_{GW}^{BI} / \Delta E_{GW}^{Ma} \lesssim 1.53$.
- If just $B_{\phi}^{Ma} < 10^{15}$ G are possible in magnetars' surfaces, one has that $1 < \Delta E_{GW}^{BI} / \Delta E_{GW}^{Ma} \lesssim 1.14$ and $|\epsilon_{ul}| \approx 2 \times 10^{-6}$.

Outline

2 Motivations

- 3 Nonlinear electromagnetism
- 4 Toroidal fields
- 5 Born-Infeld toroidal fields
- Some consequences

Conclusions

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182

Ollantaytambo, 13 Sept. 2018 16 / 17

Conclusions and perspectives

- In nonlinear electrodynamics and ideal MHD, unexpectedly enough, fields could be larger than in Maxwell's theory.
- Nonlinear electrodynamics might increase GW production.
- The upper limit to the magnitude of the ellipticity should be within the range $10^{-6} 10^{-5}$ for current observations of magnetars.
- Bl's GW energy for giant flare events of around 10^{47} erg could be at most 10% 20% larger than their classical counterparts.
- For more energetic events, the maximum BI GW increase percentage could be much higher than 50 %. This might be relevant for GRBs associated with magnetars.
- When GW detectors are able to better constrain magnetar ellipticities, minimum values for the Born-Infeld's scale field could be inferred astrophysically.
- It's still pending stability analysis for magnetic fields within nonlinear electrodynamics.

Jonas P. Pereira (U. Southampton & UFABC)

IWARA 2018-arXiv:1804.10182