The Evolving Story of

Collaborators:

T. Temim J. Gelfand C. Kolb J. Blondin and more...

Pulsar Wind Nebulae

Patrick Slane

IWARA2018

What Can We Learn From Composite SNRs?

- Neutron star ages \Rightarrow cooling
- NS velocities \Rightarrow SN kicks
- Ejecta composition/mass \Rightarrow progenitor type/mass
- Properties of circumstellar material \Rightarrow progenitor type/history
- Pulsar spin-down power/history \Rightarrow magnetic field history
- Particle injection composition/spectrum \Rightarrow acceleration process
- PWN magnetic field \Rightarrow particle history and fate
- Pulsar particle diffusion/escape \Rightarrow e⁺/e⁻ cosmic rays

Ejecta/Wind Mass

- Ejecta and wind mass constrains progenitor mass.
 - X-ray studies (spectra, brightness profiles) can "measure" both.
- Wind profile impacts development of SNR.

- Composition of ejecta probes explosion details.
- Explosive nucleosynthesis, turbulence/mixing.
- Measurements of shocked ejecta reveals details of progenitor.
- Inner ejecta particularly important for probing core.

IWARA2018

SNR/PWN Dynamical Evolution

- PWN evolution constrained by pulsar input and SNR evolution
- Derived properties can be used to calculate spectrum and compare w/ multiwavelength observations.
- But... spherical symmetry, uniform medium, etc.

Patrick Slane

IWARA2018

Patrick Slane

Modeling Composite SNRs: Hydro Simulations

- Hydrodynamical model (VH1)
- Uniform-composition ejecta imparts explosion energy
- Expansion into CSM with optional density gradient
- Pulsar at center of grid
 - Optional pulsar motion by moving grid
 - Inject γ = 4/3 wind w/ parameterized synchrotron/ IC/adiabatic losses
- Track particle composition, age, and effective γ of cells.

Modeling Composite SNRs

Pulsar

velocity

400 km s⁻¹

Hydrodynamical model (VH1)

- Uniform-composition ejecta imparts explosion energy

- Expansion into CSM with optional density gradient
- Pulsar at center of grid
- Optional pulsar motion by moving grid
- Inject γ = 4/3 wind w/ parameterized synchrotron/ IC/adiabatic losses
- Track particle composition, age, and effective γ of cells.

Broadband Spectrum at 17,000 yrs

- Semi-analytic model for radiative evolution of the PWN (Gelfand et al. 2009)
- Input parameters from observational constraints and HD model
 - \rightarrow B = 11 µG and an electron energy break at 300 GeV

Patrick Slane

Theories of Astrophysical Big Bangs (Tokyo, Japan)

<u>G21.5-0.9</u>

- IR measurements reveal ejecta swept up by PWN.
 Shell seen in [Fe II] and [C II]
- PWN is probing innermost ejecta from explosion.

IWARA2018

MSH 15-56: A Fast-Moving NS

- For MSH 15-56, X-ray observations reveal NS located at edge of disrupted PWN, close to SNR shell.
- Suggestive of asymmetric RS/PWN interaction.

- Proper motion measured with Chandra.
- Relatively high velocity in direction of nearby shell (assuming d = 4.1 kpc).
- Position angle $10^{\circ} \pm 14^{\circ}$ W of S.

Pulsar Wind History

- Young electrons flow along edge of disrupted PWN while older particles fill nebula.
 - Consistent with observed X-rays/radio structure.

Summary

- X-ray studies of composite SNRs provide important constraints on
 - Ejecta mass, CSM distribution, history of pulsar injection, pulsar motion...
- Broadband modeling constrains evolution of PWNe and SNRs.
 - Magnetic field, synchrotron burn-off.
 - Pulsar injection, particle history.
- Hydrodynamical modeling crucial in understanding morphology and overall evolution.
 - Reverse shock interactions provide crucial impact on evolution, and on inferences about pulsar velocities.
 - More work on 3D, MHD, and radiation needed.