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f-mode

w1-mode	

 
ω f ≈ 0.78 +1.64

M
1.4M⊙

⎛
⎝⎜

⎞
⎠⎟
10km
R

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢

⎤

⎦
⎥

1/2

 
ωw ≈ 10km

R
⎛
⎝⎜

⎞
⎠⎟ 20.92 − 9.14 M

1.4M⊙

⎛
⎝⎜

⎞
⎠⎟
10km
R

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

(average density)1/2	

ω
f	

R 
ω

w
	

compactness	

SSeepp..  88--1155//22001188  IIWWAARRAA22001188＠OOllllaannttaayyttaammbboo  

ddeetteerrmmiinnaattiioonn  ooff  ((MM,,  RR))  

22  



CCoolldd  NNSS  &&  EEOOSS  

SSeepp..  88--1155//22001188  IIWWAARRAA22001188＠OOllllaannttaayyttaammbboo  

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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FIG. 10: For the various progenitor models, the frequencies of f -, p1-, and p2-modes are shown as a function of the normalized average
density of PNSs, where the normalized average density is defined by (MPNS/1.4M⊙)1/2(RPNS/10km)−3/2. The thick solid line in each
panel corresponds to the universal relation shown as Eq. (19).

p1, and p2-modes for the various progenitor models are shown in Fig. 10, where the frequencies are calculated with the (Ye, s)
distributions inside the star as in Fig. 6. In this figure, LS220M11.2, LS220M15.0, LS220M27.0, and LS220M40.0 correspond
to the results obtained with the progenitor models with Mpro = 11.2M⊙, 15.0M⊙, 27.0M⊙, and 40.0M⊙ for LS220 EOS,
respectively, while ShenM15.0 is the results obtained with the progenitor model with Mpro = 15.0M⊙ for Shen EOS. From this
figure, one can observe that the frequencies of PNSs are almost on the same line as a function of the average density of PNS,
i.e., the frequencies are almost independent from the progenitor models. Thus, we can get an universal relation between the
frequencies from the PNSs and the average density of PNSs, such as

f (PNS)
i (Hz) ≈ c0

i + c1
i

(
MPNS

1.4M⊙

)1/2 (
RPNS

10 km

)−3/2

, (19)

where i denotes f , p1, and p2 for f -, p1, and p2-modes, and c0
i and c1

i are some constants irrespective of the progenitor models
of PNSs. The coefficients in this relation are shown in Table III and the universal relations obtained here are also plotted in Fig.
10 with thick solid line. Note that one can see the deviation of the frequencies from the relation [Eq. (19)] in the region of higher
average density. This may be an effect of the mass accretion from the outer region of PNS.

TABLE III: Coefficients in the universal relation shown as Eq. (19) for the various progenitor models of PNSs.

modes c0
i (Hz) c1

i (Hz)
f −29.48 3690

p1 343.9 5352

p2 640.8 7435

With respect to the characteristic gravitational waves radiating after bounce of core-collapse supernovae, the evidence of
signal due to the convection and the standing accretion-shock instability has also been reported [32, 33], which is associated
with the g-mode oscillations around (and above) the surface of PNSs. In fact, the frequencies can be well-expressed by using
the radius and mass of PNSs as

fg ≈ 1
2π

GMPNS

R2
PNS

(
1.1mn

⟨Eν̄e⟩

)1/2 (
1 − GMPNS

c2RPNS

)2

, (20)

where mn and ⟨Eν̄e⟩ denote the neutron mass and the mean energy of electron antineutrinos [32]. That is, the frequencies es-
sentially depend on MPNS/R2

PNS, which is completely different from the f -mode frequencies depending on (MPNS/R3
PNS)1/2

as shown above. Thus, carefully observing the frequencies of gravitational waves radiating from the PNSs in supernovae, one
might be possible to determine the mass and radius of PNSs via Eqs. (19) and (20). For example, one might observe the time
evolution of gravitational wave spectra from the PNS for Mpro = 15M⊙ and LS220, as shown in Fig. 11. We remark that, to
calculate the g-mode frequencies with Eq. (20), we adopt the ⟨Eν̄e⟩ distribution given by

⟨Eν̄e⟩ =

{
3t/400 + 13 (0 ≤ t ≤ 400 msec)
16 (400 msec ≤ t)

, (21)
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A NEW GRAVITATIONAL-WAVE SIGNATURE OF SASI ACTIVITIES 3

Fig. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A+ [cm], bottom; the characteristic wave strain
in frequency-time domain h̃ in a logarithmic scale which is over plotted by the expected peak frequency Fpeak (black line denoted by “A”).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;
Müller et al. 2013). The component “B” is considered to be associated with the SASI activities (see Sec. 3). Left and right panels are for
TM1 and SFHx, respectively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively.

Fig. 2.— Snapshots of the entropy distribution (kB baryon−1) for models SFHx and TM1 (top left; Tpb = 150 ms of SFHx, top right;
Tpb = 237 ms of SFHx, bottom left; Tpb = 358 ms of SFHx, bottom right; Tpb = 358 ms of TM1). The contours on the cross sections in
the x = 0 (back right), y = 0 (back left), and z = 0 (bottom) planes are, respectively projected on the sidewalls of the graphs. The 90◦

wedge on the near side is excised to see the internal structure. Note that to see the entropy structure clearly in each dynamical phase, we
change the maximum entropy in the colour bar as smax = 16, 20 and 22 kB baryon−1 for Tpb = 150, 237 and 358 ms, respectively.
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PPNNSS  mmooddeellss  
•  wwee  aaddoopptt  tthhee  rreessuullttss  ooff  33DD--GGRR  ssiimmuullaattiioonnss  ooff  ccoorree--ccoollllaappssee  
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–  EEOOSS  ::  SSFFHHxx  ((22..1133MM⊙))  &&  TTMM11  ((22..2211MM⊙))  

–  RRPPNNSS  iiss  ddeeffiinneedd  wwiitthhρss  ==  11001100  gg//ccmm33  
–  uussiinngg  tthhee  rraaddiiaall  pprrooffiilleess  aass  aa  bbaacckkggrroouunndd  PPNNSS  mmooddeell,,  tthhee  eeiiggeenn--
ffrreeqquueenncciieess  aarree  ddeetteerrmmiinneedd..  
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.

PROBING MASS-RADIUS RELATION OF PROTONEUTRON … PHYSICAL REVIEW D 96, 063005 (2017)
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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X00 þ ðΦ0 − Λ0ÞX0

þ e2Λ
!
ω2e−2Φ −

lðlþ 1Þ
r2

þ 6m
r3

− 4πðε − pÞ
"
X ¼ 0:

ð7Þ

By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; % % % ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
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"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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27.99 − 12.02
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10 km
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
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fw1

"
1=2

!
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D

"
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where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
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fw1

"
1=2

!
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D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
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of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).

SOTANI, KURODA, TAKIWAKI, and KOTAKE PHYSICAL REVIEW D 96, 063005 (2017)

063005-6

the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).

SOTANI, KURODA, TAKIWAKI, and KOTAKE PHYSICAL REVIEW D 96, 063005 (2017)

063005-6

((MMPPNNSS,,  RRPPNNSS))  aatt  eeaacchh  ttiimmee  aafftteerr  ccoorree  bboouunnccee  

1144  


