Oblique Magnetic Fields

and the Role of Frame Dragging

Vladimír Karas

in collaboration with

Ondřej Kopáček & Tayebeh Tahamtan

ASTRONOMICAL INSTITUTE, PRAGUE

Motivation: magnetic reconnection in ergosphere?

Koide & Arai (ApJ, 2008); Lyutikov (PRD, 2011); Morozova et al. (2014)

8th International Workshop on Relativistic Astronomy and Astrophysics, Ollantaytambo, 9-15 September 2018

Wald's axisymmetric field

$$F = \frac{1}{2}B_0 \left(\,\mathrm{d}\tilde{\xi} + \frac{2J}{M} \,\mathrm{d}\xi \right)$$

Magnetic flux surfaces (magnetic field lines lie in these surfaces):

$$4\pi\Phi_{\mathcal{M}} = \int_{\mathcal{S}} \boldsymbol{F} = \text{const.}$$

Magnetic/electric Lorentz force:

$$m\dot{\boldsymbol{u}} = q_{\mathrm{m}}^{\star}\boldsymbol{F}.\boldsymbol{u}, \qquad m\dot{\boldsymbol{u}} = q_{\mathrm{e}}\boldsymbol{F}.\boldsymbol{u}.$$

Magnetic field lines (aligned case):

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{B_r}{B_\theta},$$

Rotating black hole in vacuum, aligned magnetic field

An axisymmetric case: (a) a = 0; a non-rotating (Schwarzschild) black hole;

(b) a = M a maximally rotating Kerr black hole – Meissner effect.

Magnetic/electric lines of force

Lorentz force acting on electric/magnetic monopole at rest

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} \propto {}^{\star}\!F^{\mu}_{\nu}\,u^{\nu}, \qquad \frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} \propto F^{\mu}_{\nu}\,u^{\nu}.$$

Magnetic lines:

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\frac{F_{\theta\phi}}{F_{r\phi}}, \qquad \frac{\mathrm{d}r}{\mathrm{d}\phi} = \frac{F_{\theta\phi}}{F_{r\theta}}.$$

Magnetic flux (axially symmetric case):

$$\Phi_{\rm m} = \pi B_0 \left[r^2 - 2Mr + a^2 + \frac{2Mr}{r^2 + a^2 \cos^2\theta} \left(r^2 - a^2 \right) \right] \sin^2\theta$$

Expulsion of magnetic flux out of fast rotating black hole: $\Phi_{\rm m} = 0$ on hemisphere $r = r_+$, a = M ("Meissner effect").

Rotating black hole, translation boost

Effect of translatory motion (linear boost).

Rotating black hole in vacuum, oblique magnetic field

Effect of misalignement.

Magnetic null points

Magnetic (blue) and electric (red) field lines

Magnetic dipole in Rindler approximation

FIG. 14 (color online). A 3D visualization of the magnetic fields lines and corresponding horizon currents $\mathbf{J}_{\mathcal{H}}$ (left) and electric field lines with the corresponding horizon charges $\sigma_{\mathcal{H}}$ (right) for the boosted Rindler dipole. The case shown is for $v_{S,x} = 0.2$.

D'Orazio & Levin (Phys. Rev. D, 2013)

Figure 5. Two-dimensional sections of the magnetic field lines in the vicinity of the null point (red mark) located at $x_0 = 0.39$, $y_0 = 5.86$ and $z_0 = 2.35$. Same values of parameters as in Fig. 4 are used.

Figure 6. Iso-contours of the magnetic field strength B in the vicinity of the null point located at $x_0 = 0.39$, $y_0 = 5.86$ and $z_0 = 2.35$. Same values of parameters as in Fig. 4 and same section planes as in Fig. 5 are used.

Kopáček, Tahamtan & Karas (2018)

Conclusions

Because of the combined effect of frame dragging and boost, a rotating BH forms magnetic null points.

Charged particles can be efficiently accelerated by electric field passing through magnetic nulls.

Karas, Kopáček, & Kunneriath (2013), Int. J. Astron. Astrophys., 3, 18 Kopáček, Tahamtan, & Karas (2018), Phys. Rev. D, submitted

Supplementary slides

in a vacuum spacetime generate a test-field solution of Maxwell equations:

Killing vectors

$$\xi_{\mu;\nu} + \xi_{\nu;\mu} = 0$$

We *define*

$$F_{\mu\nu} = 2\xi_{\mu;\nu}.$$

Then, using the Killing equation and the definition of Riemann tensor,

$$F^{\mu\nu}{}_{;\nu}=0.$$

Field invariants:

$$\boldsymbol{E}.\boldsymbol{B} = \frac{1}{4} \star F_{\mu\nu} F^{\mu\nu}, \qquad B^2 - E^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu}.$$

Two examples of non-diverging elmg. test field

1. A spherically symmetric electric field. A unique solution that is well-behaving both at $r = r_+$ and at $r \to \infty$. This term describes a weakly charged Reissner-Nordström black hole.

2. An asymptotically uniform magnetic field:

$$F_{\mu\nu} \rightarrow B_{\parallel} \boldsymbol{e_z} + B_{\perp} \boldsymbol{e_x},$$

i.e. $F_{r\theta} \rightarrow -B_{\perp} r \sin \phi,$
 $F_{r\phi} \rightarrow B_{\parallel} r \sin^2 \theta - B_{\perp} r \sin \theta \cos \theta \cos \phi,$
 $F_{\theta\phi} \rightarrow B_{\parallel} r^2 \sin \theta \cos \theta + B_{\perp} r^2 \sin^2 \theta \cos \phi.$

Magnetic null points – II

Magnetic null points – III

