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O The Standard model of particle physics takes quark model as structure carrier, and is built
and developed gradually on the basis of the unified theory of electro-weak and quantum
chromodynamics. Glasow et al. are the founders »

O The Standard Model is a theory concerning the electromagnetic, weak and strong nuclear
interactions. It divides particles into the two categories of fermions(including quarks and
leptons) and bosons (including gluons, photons, W and Z bosons and Higgs boson)
according to their and can explain the properties and interactions of elementary particles -

O All the particles but the Higgs boson have been experimentally supported and validated.
The Higgs boson has no spin or electric charge, but has mass.

O The differences in their spins make fermions and bosons have completely different
properties. A fermion has a semi-integer spin and obeys the Pauli exclusion principle.

The boson has integer spin and does not follow the Pauli exclusion principle.



O In 1924, a young Indian physicist S. Bose Bose-Einstein Condensate
proposed a new idea of distinguishable identical

particles. Einstein extended Bose's statistical
method on photons to atoms, This is what we
call Bose-Einstein condensate (BEC).

O In 1938,London proposed that the superfluid of
liquid helium (He4) was essentially a qguantum
statistical phenomenon, Until the end of last
century, this research made a breakthrough.

O Recently, the study on BEC has developed
rapidly and a series of new phenomena were
observed, such as the coherence in BEC,
Josephson effect, spiral, ultra-cold Fermi
atomic gas. In neutron stars, superconductivity Stevn Chu; Claude Cohen-

; Tannoudji; William Daniel Phillips
and superfluid belong to BEC phenomenon..




The concept of Bose stars

O The concept of Bose stars was first proposed by Ruffini and
Bonazzola in 1969. It is generally believed to be a dense star
formed by the collapse of a boson cloud with a spin of O under the
action of self-gravity.

OO0 Bose stars contain at least one scalar field are considered as a
macroscopic BEC phenomenon under the action of gravity. If a
scalar field exists in nature, it is possible to form a gravitational
binding through the Jeans instability.

O There is no degenerate pressure inside the planet, but it will not
collapse indefinitely. The way that Boson stars prevent infinite
gravitational collapse is by the Heisenberg uncertainty principle.



Fluid Boson stars

2.1 Scale fields describing Boson stars

The Lagrangian density of a complex scalar field coupled to its own gravitational field reads

R
L:m—aﬂ@*a“@—mch*cp: (1)

where R := g"VRy,y is the Ricci curvature scale (g is the metric tensor and p, v = (0,1,2,3), Ryy is the
Ricci tensor), G is the Newton gravitational constant in natural units, and the asterisk in the equation above
denotes complex conjugation, g, denotes the covariant derivative and m is the mass of a boson. Using the

variational principle, we obtain a coupled Einstein-Klein-Gordon equation
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where 7,y is the energy-momentum tensor

I (g"/—gdy®) —m*d =0, (2b)

ﬂ[v = aﬂ (I"*ay'@ +aﬂ¢)5v¢)* _gj_“.!{aa (I’*aﬂ@ + ”IE(I)*(I)]. (3)

Here Eq.(2a) describes the properties of space-time in the stellar immediate vicinity, while Eq. (2b) gives an
equation of state of the scalar field. The physical state of a boson star is usually described by the Einstein-
Klein-Godon equation of a scalar field coupling to the gravitational field

ds® = —B(r)de* +A(r)dr* +r*(d6* +sin® 8d¢?), (4)



2.2 The ground state solution to Einstein-Klein-Gordon equation in

a scalar field
Employing a covariant divergence formula, then Eq.(2b) is rewritten as
1 lk | 2 2 _
\/__gﬁ;{g V=20, ®) + B(F)BD':I? m=0. (7)

when we investigate a solution to the Klein—Gordon equation, the scalar field @(r,¢) is usually treated as
a function of separable variables. Considering a spherically symmetric boson star, it has

(r,t) =R(r)Y"(6.0)e ™, (8)

where Y"(6,¢) is a spherical harmonics function. By introducing a method of second quantization of a
scalar field, the general solution to Eq. (7) is given as

(D(rvr) = E”m‘mﬂnf (r)yrfrf_m + an!mRM(r)Y;ﬁ; e, (9)
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where a,;,; = bmm. L.€., appy and by, are a pair of Hermitian conjugate operators. Since all the particles
are in the ground state, i.e., n =1 and [ = (), and the scale field is limited to a real scale field, i.e., ¢ = @~,
then there is a relation of @y, = by, Which is obtained from Eq. (9). Inserting Eq. (8) into Eq.(7) yields a
radial component R(r) of @,

dRy 2 dBjdr _dA/dr dRy
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Considering the ground state of scale field, the expression above is simplified as

dR?, ( |
drr ‘r 2B 24 7 dr

Treating the energy-momentum-tensor, Ty, as an operator, one can obtain an average value of 7, in the
ground state |G >=|N,0,0,0,... > (Camenzind 2007; Mukhnaov & Winitzki,2007),
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where E19 = w denotes the eigenenergy of the ground state. In the same way, if the conserved current, J*,
in Eq.(5) is treated as an operator, we can obtain an average value of J;y in the ground state,

RE
< GlJ°|G >= EyN—2-.. (13)
mB(r)



Inserting Eq.(11) and Eq.(12a) into the Einstein field equation of Eq.(2a), we obtain
two independent equations

dA/dr 1-1/A 47GN_EX 5 o  (dRyo/dr)*
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Combining the Bianchi identity with Eqs. (12b.c) and (13-15), one obtain a normalization relation

f\f—g <GIG>dx=N
[nserting Eq. (13) into Eq. (16), we have
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Using a numerical simulation method, we get a relation of Ry and r
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Equations of (11),(14),(15),(17) and (18) collectively describe the ground-state
properties of a complex scalar field



The properties of a fluid Boson star

A fluid boson star discussed here refers to a scalar field system mixed with fermions,
Fermions inside a boson-fermion star are always treated as an ideal fluid, whose
energy-momentum tensor is written as
Tuy = {P-I—P)Eﬂuﬁv + guvP, (19)
where P is the fluid pressure, p is the fluid density and «* = dx* /dt is a four-dimensional speed. For a
static fluid u’ = (1°,0,0,0), since ds* = goo(dx”)?. and u° = dx” /dT = —dx /ds, we have
uy = goit'' = goout” = /—goo , 1 = =u3=0. (20)
Utilizing the metric of Eq.(4), we express Eq.(19) as
pB(r) 0 0 0
0 PA(r) © 0
0 0 rP 0
0 0 0 r*sin’6P
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Inserting Eq.(21) into the Einstein field equation, we get an equilibrium equation

for the Fermi fluid, dP _ P+pdB(r) 1

i _ 22
dt 2 dr B (22)




Boson Fermi stars
Assuming that the system is composed of a cold boson-fermion fluid, the total energy-
momentum tensor could be expressed as the sum of two terms,

T, =T\ + T, (28)

where Tm] denotes the energy-momentum-tensor of a real scale field and TMJ denotes the energy-momentum
tensor of a strongly degenerate Fermi fluid. Inserting Eq. (3) and Eq. (21) into Eq. (28), we have

T&i'} = (P+p)uyuy +guv P,

T\5) = 9, ®*9, &+, D, D" — g, (I D "D+ m’D* D) . (29)

Combining Eq.(12) with Egs.(21) and (29), for a spherically symmetric static boson-
fermion star in the ground state, its energy-momentum tensor is given by
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Inserting Eq.(30) into the Einstein field equation of Eq.(2a) and making use of
variable substitution:

x:=mr, 6(x) = V8TGR(r),w:=2,p(t) = 4—”5—',0{ t) and P(t) := mf’P[rj we obtain

’YI lf: A
A =xA? [.p-l—[B +1)o?+ |-—(-1), (31)
and ; p
' — = 5 07 B
B :.mB[2P+(%—1)a=+T+?(A—1) , (32)

where the apostrophe signifies the derivative of x. Comparing Egs.(31,32) with Eqgs.(14,15), it is
easy to see that the Einstein field equation becomes different when a scalar field is coupled with
an ideal Fermi fluid Inserting all of the variable substitutions above into Eq.(7) yields

2 B A e
_1.+2[§— )lo (F—UC"-. (33)

where .’ :=d?/d>

Substituting Eq.,(35) into Eq.(34), we have

' B’ sinhz — 2sinh(%) .
t'=—2— 2 _ :
B coshr —4cosh(5)+3 (36)




For the fermions, if we apply the above variable substitutions to Eq.(26)
of the fluid equilibrium, then have

dt B —
' =——=—(P+D) , M
2 P 4
where B
_ — _ K t
K =K(m,my), p=K(sinht—t), and P= E(sinhr—ﬁsinhi—%) . (35)

Substituting Eq.,(35) into Eq.(34), we have

Fg 7 sinh(!
,  ,B' sinhr—2sinh(5

)
"T7°B - 36
B coshr —4cosh(5) +3 (56)




Equilibrium Equation of Boson-Fermi Star in Newtonian Approximation

The metric of V in the Newtonian approximation is given by

[ —1—2V 0 0 0

B 0 | —2V 0 0

Suv = 0 0 1—2V 0
0 0 0 -2V |

3.2The flow conservation equation of a Boson system

A scalar field @(r.1) is treated as by the separation of variables, ®(r,r) = ¢(r)e™™", then one gets @ g o
w. It is reasonably assumed that

¥ < 1+0(e"?), and |T%| > T > TV

(33)
m

for a weak field approximation (Silverira & Sousa 1995). Inserting the metric of gravitation potential V
into THY, the energy-momentum tensor in the ground state

T =(1-4V)®' P+ &P +m*(1-2V)P*P. (54)
i
Using the assumptions in Eq. (53) Eq. (54) is written as
|
T% =S (m* +w") @' @ = m* @ P. (55)



where V is considered as a small quantity. Compared with V2V = 47Gp, the density in a Boson system
is then defined as p'B) := m?®*®. The covariant divergence of the energy-momentum tensor in Eq. (3) is
given by
- 1
T = AR 00 0]
+TH (090" ®* + 9D 9" ®) — ¢V 9, (0% DI, D" +m*PD*). (56)

Substituting the approximation relation @ ;/® o ~ 0(e'/?) (Silveira & de Sousa 1995) into Eq. (56). we
have

T = 0(e"/*) +2m’®* ® +4m’ & D ~ 6m* O ® (57a)
T", = —m’di(®* @) +m*®* IV +0(e*) — di(m*®* )+ 0(¢*)
~ —2m0i( " P) + m* D DIV +0(e?). (57b)

In the same way, we get the energy-momentum tensor T4, = 0 and the conservation equation

om’d* P =0 | (58a)
2 o(D D) +m D PV =0 | (58b)

from the Bianchi identity. This equation describes the properties of flow
equilibrium equation for a scalar field in Newtonian approximation.



3.3 The flow conservation equation of a Boson-Fermi
system system in the Newtonian approximation

The total energy momentum tensor of a Bose-Fermi system can be simply expressed
as the sum of two terms. The flow conservation of the system gives

Tow =T, +T0 =0 . (59)

Combining Eq.(59) with Eqgs.(52) and (58), we have

dP d P+p P+p

—— 4+ = 3h*h — E
ar+a”_|v|2+\7 (1—| |27}+6m¢¢ 0, (60a)
Jd P+p P+p P+p
VP+7 +(7-V V.77
+ o T— 2 +( )(I—IV|2_W)+1—|V|3( V)V +
1P+|FTE(1 VY -4 1P+|p|'2 (V- 7)7 = 2m*0 (" @) +m’*®*® = 0. (60b)

where V = V(r) + V() denotes the total gravitational potential of the system. Inserting Eq. (60a) into
Eq. (60b), we get

P+p &T’Jr P+p
- dt  1—|v]

P+p
I —vf?

(V-V)V +

VP + g? M PPV +

P+p
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(VV-7)7 —2m*V(®* D)oV +m*®*dVV =0.  (61)




For the speed is non-relativistic, e.g., v* ~ O(¢), all the quadratic terms of speed in Eq. (61) can be ignored
and Eq. (61) is simplified as

Vp—g—v* 6m* @ OT + (P+p)VV —2m*V (D D)V +m* d* BVV = (62)

L : . i
[n non-relativistic Newtonian approximation, P < p and = ‘W S " +(7-V)¥ (Pijush et al. 2011). Thus
we obtain the fluid motion equation for a Boson-Fermi sy atem,

dv . ‘P
—= ——[VP 22V (O B) — 6 & B TV] — (1 + - v (63)
Comparing Eq. (63) with the motion equation of a Fermi system,
dv ]
— =——VP-VV | (64)
dt p

In the non-relativistic Newtonian approximation (Pijush et al. 2011), we find that the
motion equation of a relativistic Fermi fluid has changed considerably after coupling
the scalar field.



Viral Equations for a Boson-Fermi system

To investigate the equilibrium geometry of a Boson-Fermi system, it is necessary to
construct viral equations with any order for the system. If we multiply both sides of
Eq.(63) by p , then have

du; OP _Jd(m*P*P)
p— =—[5--2
dt 6‘3:; 6‘3:;

Vv
—6m> @ Pu] — (p + mzfi’*@)a— :
Xi

[n order simplify Eq. (65), we define the energy density of Bosons p, := m*@®*®, denote p as p; as, and
then integrate both sides of the equation over the whole space. Thus we get

(65)

ok o d’x= .L(é'x,- 2ox, 6mpyu;)d x m(p'f+p¢)é‘r d’x . (66)

Xj
For an isolated Boson-Fermi star, its total mass, M. is conserved,

d d
== [ (o +pp)dx =0 (67)

Substituting Eq. (67) into Eq. (66) and considering boundary conditions, we get

Y) X—x' 3,3 NA=X an
G//Pr X)ps(x x,,|3d xd I—G/ LP@(I)P@(I} _x,|3d xd'x,
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where [;(9) = [, po (x)x;d>x is the first order torque of moment of inertia. The antisymmetry of the integrals
of x and x" gives

/ pruid’x = 6m



x—x x—x
[ oot iisdsdt =0, [ [ ppolt) =y =0. @
[nserting Eq. (69) into Eq. (68), we have
d dl;
- f pf-u;d‘j’.x::ﬁm% , (70)

where the term of 61?1% is caused by a scalar field. The integral range of Eq. (70) has changed from the

full space to the boundary of Fermi fluid, because there is no scalar field term on its left side. Then, we get
the first order viral equation of fluid motion,

d 3 d . djl('i'}
ch;pfu,d _;,_Ej;pfu;d x =6m pl (71)

which works only on a Boson-Fermi system, while % Jy pruidx = 0 for a pure Fermi fluid system.



Then we get the second order viral equation of a Boson-Fermi system fluid,

dl;;(9)
Py (75)

d
I Lp_fungdjx = 2E;;j + 6ij H —26;iMy + 6m

Compared Eq.(72) with Eq.(75), it is found that there are more terms on the Fermi
fluid in the latter. Using a similar approach, we can directly give more than three
order viral equation of a Boson-Fermi system,

d
. /V P ruix jxjdx — 6m | L Po UiX jxjdx
dlig);
= 2(Ejjx +Eij) +8i | [ +6u [ | —26iiMor —28:Moj + om— = — Pijx — Py.j . (76)
k J

In the previous works (e.g., Chandrasekhar 1969), by using viral equations, the
equilibrium configuration of a fluid Fermi star has been investigated in detail are
discussed in detail. It can be predicted that, after coupling a scalar field, the
equilibrium configuration of a fluid Fermi star, especially the geometric shape of

ellipsoid stars, will change substantially.



Summary and Expectation

There is accumulating evidence that scalar fields may exist in nature. The
gravitational collapse of a boson cloud lead to the formation of a boson star. Here, we
first examine the properties of a complex-scalar—field boson star, analyze the ground
state solutions, and then analyzed the configuration of a star composed of bosons and
fermions, and gave coupling equations. At last, we considered the hydrostatic
equilibrium equation of the boson-fermion star, and gave the virial equation with
different orders.

In our future work, we will explore the equilibrium configuration and the stability of
a Boson-Fermi star and how a scalar field effect the pressure of the system by using
higher order viral equations of fluid motions, and the related theoretical work is
underway!



Thank you

for your attention!



Appendix
Massive mass of mini Bose star

Indeed. applying the uncertainty principle to a boson star by assuming it to be a
macroscopic quantum state results in an excellent estimate for the maximum mass of
a BS. One begins with the Heisenberg uncertainty principle of quantum mechanics

Ap Ax = h (3)
and assumes the BS is confined within some radius Ax = R with a maximum momen-
tum of Ap = mc where m is the mass of the constituent particle

mclR = Fh. (<)

This inequality is consistent with the star being described by a Compton wavelength
of Ac = h/(mc). We look for the maximum possible mass M, for the boson star
which will saturate the uncertainty bound and drive the radius of the star towards its
Schwarzschild radius Rs = 2 G M /c2. Substituting yields

c

— hi. (3)

which gives an expression for the maximum mass

hc

1
MIT[Z’]K —_— - 6
2Gm (@)

Recognizing the Planck mass Mpianck = ~/Tic/ G . we obtain the estimate of M.« =

0.5 M%lanckf’”' This simple estimate indicates that the maximum mass of the BS is

inversely related to the mass of the constituent scalar field. We will see below in



The maximum mass of neutron star

The maximum mass of neutron stars can be estimated in a similar way. * The existence of
these stars is the result of the balance between the attractive gravitational force and the pressure
due to degenerate neutrons (fermions). Suppose there are N fermions confined in a region of size
R. Then by Pauli’s exclusion principle, each particle occupies a volume 1/n, where n = N/R?
is the number density. Effectively, each particle has a size of R/N'/3. Again, by the uncertainty
principle we have pR/N'/® ~ . Following the same argument as for the boson star case, we have
R ~ hNY/(me), and hence 2GMyax/c? ~ ENY3/(me) ~ hMpay "3 /(m*3c). Thus we have
Mpay ~ {Ji’;&ﬂffpp3 / m?. In contrast to the bosonic case, then, the maximum mass of fermionic stars
scales as My ~ My* /m2,
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Fig. 3 Left: The mass of the boson star as a function of the central value of the scalar field in adimensional
units o = V4w Ggc. Right: Maximum mass as a function of A (squares) and the asymptotic A — oo
relation of Eq. (52) (solid curve). Reprinted with permission from Colpi et al. (1986); copyright by APS
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Fig. 4 The compactness of a stable boson star (black solid line) as a function of the adimensional self-
interaction parameter A = A/ (49: sz). The compactness is shown for the most massive stable star (the

most compact BS is unstable). This compactness asymptotes for A — oo to the value indicated by the red,
dashed line. Also shown for comparison is the compactness of a Schwarzschild BH (green dot-dashed line),
and the maximum compactness of a non-spinning neutron star (blue dotted line). Reprinted with permission

from Amaro-Seoane et al. (2010); copyright by IOP



